最新版圆锥曲线专题17之11 极点极线与定点定值.docx
《最新版圆锥曲线专题17之11 极点极线与定点定值.docx》由会员分享,可在线阅读,更多相关《最新版圆锥曲线专题17之11 极点极线与定点定值.docx(5页珍藏版)》请在课桌文档上搜索。
1、专题11极点极线与定值定点第一钎极点极线原理介绍极点极线显威力运用高观点例析圆锥曲线中的完全四点形问题如图1,设P是不在圆锥曲线上的一点,过P点引两条割线依次交圆锥曲线于四点EG,连接尸G交于N,连接EG,FH交于M,则直线MN为点P对应的极线.若P为圆锥曲线上的点,则过户点的切线即为极线.由图1同理可知,PM为点N对应的极线,FN为点M所对应的极线.因而将MN尸称为自极三点形.任意一点对应的极线为另外两点的连线.设直线MN交圆锥曲线于点AB两点,则PAPB恰为圆锥曲线的两条切线.图I只有“站得高”,遇到问题才能够从容面对.解析几何一直是学生乃至部分中学数学老师所害怕的内容,如果能从高等数学的
2、视角去看待这些问题,有时候处理起来将会变得非常容易.极点、极线是高等几何中的内容,但在中学里会经常涉及.统一结论:已知圆锥曲线:Ax2+By2+Dx-Ey+F=O,则点以如儿)对应的极线方程为:抬尸+为,0),+。土分+石%产+尸=0.以椭圆为例,我们来证明一下极点极线的结论如图M是椭圆+=1外一点,过P作两条直线分别与椭圆交于A,B和C,D两点.a,b2N是AD与CD的交点,证明N点在直线学+笔=I上M接下来我们推广到更一般的形式,设数和皿交于点乂,类似的方法我们也可以证明学+紫二I从而NGN,%)一定在直线安+誓=1上,那么点N和M均在直线卑+*=1上,随着ABa)四点的ab-ab-运动,
3、所有的点N和M的轨迹就构成了直线卑+*=1,即点M对应的极线为警+*=1,同样的a-Zrab以点N为研究对象,可以得出其对应的极线是两点的连线所在的直线,同样的以点M为研究对象,可以得出其对应的极线是MN两点的连线所在的直线M除此之外,极点极线还有如下结论,M是椭圆外一点,N是M对应的极线上位于椭圆内的任一点,连接MN交椭圆于EF两点,则. xn =X =Xp且篝=琮现证明如下ME = NE MFNF设M是椭圆二+=1外一点,MA,MB均与椭圆相切,O为椭圆的中心,直线MC)与AB交于点N,交crb椭圆于E,F.贝IjxmXN=xE=xF此结论还可以用定比点差法来证明,参见定比点差法那一节第二
4、用应用极点极线的解决定值定点2【例9】(武汉模拟)已知A,8分别为双曲线=2-21=1实轴的左右两个端点,过双曲线的左焦点产3作直线PQ交双曲线于尸,。两点(点P,Q异于A,B),则直线AP,5Q的斜率之比ZAPMgQ=()123A.-B.-3C.-D.-332【例10己知椭圆C:工+反=1的左、右顶点分别为A,B,过X轴上点M(Y,0)作一直线PQ与椭42圆交于尸,Q两点(异于A,8),若直线AP和BQ的交点为N,记直线MN和AP的斜率分别为勺,右,则人:玲=()A.-B.3C.-D.232【例II】(沙坪坝期中)设A,B分别是双曲线V工=1的左右顶点,设过p(L,。的直线R4,PB与双32
5、曲线分别交于点M,N,直线MN交X轴于点Q,过Q的直线交双曲线的于S,T两点,且SQ=2QT,则ABST的面积()A.35B.-7C.-15D.-1648222【例12(济南二模)已知椭圆C:+二=l(bO)的左、右焦点分别为月、居,N(OLI)为椭圆的一ab个顶点,且右焦点F2到双曲线Y一9=2渐近线的距离为应.(1)求椭圆C的方程;(2)设直线/:y=依+以左0)与椭圆。交于A、B两点.若附,仍为邻边的平行四边形为菱形,求机的取值范围;若直线/过定点P(l,1),且线段AB上存在点T,满足也=四1,证明:点7在定直线上.ATTB【例13】(2013江西)椭圆C:+W=l(a%0)的离心率e
6、=W,a+b3.crb2(1)求椭圆。的方程;(2)如图,A,B,。是椭圆C的顶点,尸是椭圆C上除顶点外的任意点,直线。尸交大轴于点N直线4)交Bp于点设族的斜率为女,MN的斜率为小,证明为-4为定值.【例14】(湖北十一校联考)己知直线y=x-2与抛物线V=2px相交于A,B两点,满足OA_LQ8.定点C(4,2),0(-4,O),M是抛物线上一动点,设直线CM,OM与抛物线的另一个交点分别是瓦F.(1)求抛物线的方程;(2)求证:当M点在抛物线上变动时(只要点后、尸存在且不重合),直线E尸恒过一个定点;并求出这个定点的坐标.第三稀非典型极点极线解决定值定点(平行情况)圆锥曲线上四点构成的四
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 最新版圆锥曲线专题17之11 极点极线与定点定值 最新版 圆锥曲线 专题 17 11 极点 定点
链接地址:https://www.desk33.com/p-502300.html