六年级奥数举一反三典型例题详细讲解及练习.docx
《六年级奥数举一反三典型例题详细讲解及练习.docx》由会员分享,可在线阅读,更多相关《六年级奥数举一反三典型例题详细讲解及练习.docx(34页珍藏版)》请在课桌文档上搜索。
1、六年级奥数举一反三典型例题详细讲解及练习假设法解题专项一、假设法假设法解体的思考方法是先通过假设来改变题目的条件,然后再和已知条件配合推算。有些题目用假设法思考,能找到巧妙的解答思路。运用假设法时,可以假设数量增加或减少,从而与已知条件产生联系;也可以假设某个量的分率与另一个量的分率一样,再根据乘法分配律求出这个分率对应的和,最后依据它与实际条件的矛盾求解。二、精讲精练【例题1】甲、乙两数之和是185,已知甲数的1/4与乙数的1/5的和是42,求两数各是多少?【思路导航】假设将题中“甲数的1/4”、“乙数的1/5”与“和为42”同时扩大4倍,则变成了“甲数与乙数的4/5的和为168”,再用18
2、5减去168就是乙数的l5o解:乙:(18542X4)(1-154)=85答:甲数是100,乙数是85。练习1:1 .甲、乙两人共有钱150元,甲的1/2与乙的1/10的钱数和是35元,求甲、乙两人各有多少元钱?2 .甲、乙两个消防队共有338人。抽调甲队人数的1/7,乙队人数的1/3,共抽调78人,甲、乙两个消防队原来各有多少人?3 .海洋化肥厂计划第二季度生产一批化肥,已知四月份完成总数的1/3多50吨,五月份完成总数的2/5少70吨,还有420吨没完成,第二季度原计划生产多少吨?【例题2】彩色电视机和黑白电视机共250台。如果彩色电视机卖出1/9,则比黑白电视机多5台。问:两种电视机原来
3、各有多少台?【思路导航】从图中可以看出:假设黑白电视机增加5台,就和彩色电视机卖出1/9后剩下的一样多。黑白电视机增加5台后,相当于彩色电视机的(11/9)=89o(250+5)(1+1-1/9)=135(台)250-125=115(台)答:彩色电视机原有135台,黑白电视机原有115台。练习2:1 .姐妹俩养兔120只,如果姐姐卖掉1/7,还比妹妹多10只,姐姐和妹妹各养了多少只兔?2 .学校有篮球和足球共21个,篮球借出1/3后,比足球少1个,原来篮球和足球各有多少个?3 .小明甲养的鸡和鸭共有100只,如果将鸡卖掉1/20,还比鸭多17只,小明家原来养的鸡和鸭各有多少只?【例题3师傅与徒
4、弟两人共加工零件105个,已知师傅加工零件个数的3/8与徒弟加工零件个数的4/7的和为49个,师、徒各加工零件多少个?【思路导航】假设师、徒两人都完成了4/7,一个能完成(10547)=60个,和实际相差(6049)=11个,这11个就是师傅完成将零件的3/8与完成加工零件的4/7相差的个数。这样就可以求出师傅加工了【11+(4/7-3/8)=56个。即:师傅:(10547-49)(4/7-3/8)=56(个)徒弟:105-56=49(个)答:师傅加工了56个,徒弟加工了49个。练习3:1 .某商店有彩色电视机和黑白电视机共136台,卖出彩色电视机的2/5和黑白电视机的3/7,共卖出57台。问
5、:原来彩色电视机和黑白电视机各有多少台?2 .甲、乙两个消防队共有336人,抽调甲队人数的5/7、乙队人数的3/7,共抽调188人参加灭火。问:甲、乙两个消防队原来各有多少人?3 .学校买来足球和排球共64个,从中借出排球个数的1/4和足球个数的1/3后,还剩下46个,买来排球和足球各是多少个?【例题4】甲、乙两数的和是300,甲数的2/5比乙数的1/4多55,甲、乙两数各是多少?【思路导航】甲数的2/5与乙数的2/5的和就是甲、乙两数的2/5,是300X2/5=120,因为甲数的2/5比乙数的1/4多55,所以从120中减去55所得的差就可以看成是乙数的1/4与乙数的2/5的和。乙:(300
6、25-55)(2/5+1/4)=100甲:300-100=200答:甲数是200,乙数是100。练习4:1 .畜牧场有绵羊、山羊共800只,山羊的2/5比绵羊的1/2多50只,这个畜牧场有山羊、绵羊各多少只?2 .师傅和徒弟共加工零件840个,师傅加工零件的个数的5/8比徒弟加工零件个数的2/3多60个,师傅和徒弟各加工零件多少个?3.某校六年级甲、乙两个班共种100棵树,乙班种的1/10比甲班种的1/3少16棵,两个班各种多少棵?【例题5】育红小学上学期共有学生750人,本学期男学生增加1/6,女学生减少1/5,共有710人,本学期男、女学生各有多少人?【思路导航】假设本学期女学生不是减少1
7、/5,而是增加1/6,半学期应该有750X(1+1/6)=875人,比实际多875710=165人,这165人是假设女学生也增加1/6多出的人数,而实际女学生减少1/5,所以,这165人对应着女学生的(1/5+1/6)=ll30o上学期女生:750X(1+1/6)-710(1/5+1/6)=450(人)本学期女生:450(1-1/5)=360(人)本学期男生:710360=350(人)答:本学期男学生有350人,女学生有360人。假设法解题(二)一、知识要点已知甲是乙的几分之几,又知甲与乙各改变一定的数量后两者之间新的倍数关系,要求甲、乙两个数是多少,这样的应用题称为变倍问题。应用题中的变倍问
8、题,有两数同增、两数同减、一增一减等各种情况。虽然其中的数量关系比较复杂,但解答时的关键仍是确定哪个量为单位“1”,然后通过假设,找出变化前后的相差数相当于单位“1”的几分之几,从而求出单位“1”的量,其他要求的量就迎刃而解了。二、精讲精练【例题1】两根铁丝,第一根长度是第二根的3倍,两根各用去6米,第一根剩下的长度是第二根剩下的长度的5倍,第二根原来有多少米?【思路导航】假设第一根用去6X3=18米,那么第一根剩下的长度仍是第二根剩下长度的3倍,而事实上第一根比假设的少用去(6X3-6)=12米,也就多剩下第二根剩下的长度的(5-3)=2倍。(63-3)(5-3)+6=12(米)答:第二根原
9、来有12米。练习1:1.丁晓原有书的本数是王阳的5倍,若两人同时各借出5本给其他同学,则丁晓书的本数是王阳的10倍,两人原来各有书多少本?2 .在植树劳动中,光明中学植树的棵数是光明小学的3倍,如果中学增加450棵,小学增加400棵,则中学是小学的2倍。求中、小学原来各植树多少棵?3 .两堆煤,第一堆是第二堆的2倍,第一堆用去8吨,第二堆用去11吨,第一堆剩下的重量是第二堆的4倍。求第二堆煤原来是多少吨?【例题2王明平时积蓄下来的零花钱比陈刚的3倍多6.40元,若两个人各买了一本4.40元的故事书后,王明的钱就是陈刚的8倍,陈刚原来有零花钱多少元?【思路导航】假设仍然保持王明的钱比陈刚的3倍多
10、6.40元,则王明要相应地花去4.40X3=13.20元,但王明只花去了4.40元,比13.20元少13.20-4.40=8.80元,那么王明买书后的钱比陈刚买书后的钱的3倍多6.40+8.80=15.20元,而题中已告诉:买书后王明的钱是陈刚的8倍,所以,15.20元就对应着陈刚花钱后剩下钱的8-3=5倍。6.40+(4.403-4,40(8-3)+4.40=7.44(元)答:陈刚原来有零花钱7.44元。练习2:1 .甲书架上的书比乙书架上的3倍多50本,若甲、乙两个书架上各增加150本,则甲书架上的书是乙书架上的2倍,甲、乙两个书架原来各有多少本书?2 .上学年,马村中学的学生比牛庄小学的
11、学生的2倍多54人,本学年马村中学增加了20人,牛庄小学减少了8人,则马村中学的学生比牛庄小学的学生的4倍少26人,上学年马村中学和牛庄小学各有学生多少人?3 .箱子里有红、白两种玻璃球,红球比白球的3倍多2粒,每次从箱子里取出7粒白球和15粒红球,若干次后,箱子里剩下3粒白球和53粒红球,那么,箱子里白球原有多少粒?【例题3】小红的彩笔枝数是小刚的1/2,两人各买5枝后,小红的彩笔枝数是小刚的2/3,两人原来各有彩笔多少枝?【思路导航】假设小刚买了5枝后,小红的彩笔仍为小刚的1/2,则小红只需买(5X1/2)=2又1/2枝,但实际上小红买了5枝,多买了52又1/2=2又1/2枝。将小刚买了5
12、枝后的枝数看作“1”,小红多买了2又1/2,相当于(2/3-1/2)=l6o小刚原来:(5-5l2)(2/3-1/2)-5=10(枝)小红原来:10l2=5(枝)答:小刚原来有彩笔IO枝,小红原来有彩笔5枝。练习3:1.小华今年的年龄是爸爸年龄的1/6,四年后小华的年龄是爸爸的1/4,求小华和爸爸今年的年龄各是多少岁?2 .小红今年的年龄是妈妈的3/8,10年后小红的年龄是妈妈的1/2,小红今年多少岁?3 .甲书架上的书是乙书架上的5/7,甲、乙两个书架上各增加90本后,甲书架上的书是乙书架上的4/5,甲、乙两各书架原来各有多少本书?【例题4王芳原有的图书本数是李卫的4/5,两人各捐给“希望工
13、程”10本后,则王芳的图书的本数是李卫的7/10,两人原来各有图书多少本?【思路导航】假设李卫捐了10本后,王芳的图书仍是李卫的4/5,则王芳只需捐10X4/5=8本,实际王芳捐了10本,多捐了108=2本,将李卫捐书后剩下的图书看作“1”,着2本书相当于4/57/10=1/10。(10-1045)(4/5710)=30(本)3045=24(本)答:李卫原有图书30本,王芳原有图书24本。练习4:1 .甲书架上的书是乙书架上的4/5,从这两个书架上各借出112本后,甲书架上的书是乙书架上的4/7,原来甲、乙两个书架上各有多少本书?2 .小明今年的年龄是爸爸的6/11,10年前小明的年龄是爸爸的
14、4/9,小明和爸爸今年各多少岁?3 .甲车间的工人是乙车间的1/4,从甲、乙两个车间各抽出30人后,甲车间的工人只占乙车间的1/6,甲、乙两个车间原来各有多少名工人?【例题5】某校六年级男生人数是女生的23,后来转进2名男生,转走3名女生,这时男生人数是女生的3/4,现在男、女生各有多少人?【思路导航】假设转走3名女生后,男生人数仍是女生的2/3,则男生应转走3X23=2人,实际上男生却转进2人,与应转走2人相差2+2=4人。将转走3名女生后的女生人数看作“1”,则相差的4人相当于现在女生的3/42/3o(2+32/3)(3/4-2/3)=48(人)4834=36(人)答:现在男生有36人,女
15、生有48人。倒推法解题专项一、知识要点有些应用题如果按照一般方法,顺着题目的条件一步一步地列出算式求解,过程比较繁琐。所以,解题时,我们可以从最后的结果出发,运用加与减、乘与除之间的互逆关系,从后到前一步一步地推算,这种思考问题的方法叫倒推法。二、精讲精练【例题1】一本文艺书,小明第一天看了全书的1/3,第二天看了余下的3/5,还剩下48页,这本书共有多少页?【思路导航】从“剩下48页”入手倒着往前推,它占余下的l-35=25o第一天看后还剩下4825=120页,这120页占全书的1-1/3=2/3,这本书共有12023=180页。即48(1-3/5)(1-1/3)=180(页)答:这本书共有
16、180页。练习1:1 .某班少先队员参加劳动,其中3/7的人打扫礼堂,剩下队员中的5/8打扫操场,还剩12人打扫教室,这个班共有多少名少先队员?2 .一辆汽车从甲地出发,第一天走了全程的3/8,第二天走了余下的2/3,第三天走了250千米到达乙地。甲、乙两地间的路程是多少千米?3 ,把一堆苹果分给四个人,甲拿走了其中的1/6,乙拿走了余下的2/5,丙拿走这时所剩的3/4,丁拿走最后剩下的15个,这堆苹果共有多少个?【例题2】筑路队修一段路,第一天修了全长的1/5又100米,第二天修了余下的2/7,还剩500米,这段公路全长多少米?【思路导航】从“还剩500米”入手倒着往前推,它占余下的12/7
17、=5/7,第一天修后还剩5005/7=700米,如果第一天正好修全长的1/5,还余下700+100=800米,这800米占全长的1-1/5=4/5,这段路全长8004/5=1000米。列式为:500(1-2/7)+100(1-1/5)=100O米答:这段公路全长100O米。练习2:1 .一堆煤,上午运走2/7,下午运的比余下的1/3还多6吨,最后剩下14吨还没有运走,这堆煤原有多少吨?2 .用拖拉机耕一块地,第一天耕了这块地的1/3又2公顷,第二天耕的比余下的1/2多3公顷,还剩下35公顷,这块地共有多少公顷?3 .一批水泥,第一天用去了1/2多1吨,第二天用去了余下1/3少2吨,还剩下16吨
18、,原来这批水泥有多少吨?【例题3】有甲、乙两桶油,从甲桶中倒出1/3给乙桶后,又从乙桶中倒出1/5给甲桶,这时两桶油各有24千克,原来甲、乙两个桶中各有多少千克油?【思路导航】从最后的结果出发倒推,甲、乙两桶共有(24X2)=48千克,当乙桶没有倒出1/5给甲桶时,乙桶内有油24+(1-1/5)=30千克,这时甲桶内只有4830=18千克,而甲桶已倒出1/3给了乙桶,可见甲桶原有的油为18+(1-1/3)=27千克,乙桶原有的油为4827=21千克。甲:24X2-24(1-1/5)(1-1/3)=27(千克)乙:24X227=21(千克)答:甲桶原有油27千克,乙桶原有油21千克。练习3:1
19、.小华拿出自己的画片的1/5给小强,小强再从自己现有的画片中拿出1/4给小华,这时两人各有画片12张,原来两人各有画片多少张?2 .甲、乙两人各有人民币若干元,甲拿出1/5给乙后,乙又拿出1/4给甲,这时他们各有90元,他们原来各有多少元?3 .一瓶酒精,第一次倒出1/3,然后倒回瓶中40克,第二次再倒出瓶中酒精的5/9,第三次倒出180克,瓶中好剩下60克,原来瓶中有多少克酒精?【例题4】甲、乙、丙三人共有人民币168元,第一次甲拿出与乙相同的钱数给乙;第二次乙拿出与丙相同的钱数给丙;第三次丙拿出与这时甲相同的钱数给甲。这样,甲、乙、丙三人的钱数相等,原来甲比乙多多少元钱?【思路导航】根据题
20、意,由最后甲钱数是1683=56元可推出:第一次甲拿出与乙同样的钱数给乙后,甲剩下的钱是562=28元,这28元就是原来甲比乙多的钱数。16832=28元答:原来甲比乙多28元。练习4:1 .甲、乙、丙三个班共有学生144人,先从甲班调出与乙班相同的人数给乙班,再从乙班调出与丙班相同的人数到丙班。再从丙班调出与这时甲班相同的人数给甲班,这样,甲、乙、丙三个班人数相等。原来甲班比乙班多多少人?2 .甲、乙、丙三个盒子各有若干个小球,从甲盒拿出4个放入乙盒,再从乙盒拿出8个放入丙盒后,三个盒子内的小球个数相等。原来乙盒比丙盒多几个球?3.甲、乙、丙三个仓库面粉袋数的比是6:9:5,如果从乙仓库拿出
21、400袋平均分给甲、丙两仓库,则甲、乙两个仓库的数量相等。这三个仓库共存面粉多少袋?【例题5】甲、乙两个仓库各有粮食若干吨,从甲仓库运出1/4到乙仓库后,又从乙仓库运出1/4到甲仓库,这时甲、乙两仓库的粮食储量相等。原来甲仓库的粮食是乙仓库的几分之几?【思路导航】解题关键是把两个仓库粮食的和看作“1”,由题意可知,从乙仓库运出1/4到甲仓库,乙仓库最后占两仓库和的1/2当乙仓库没有往甲仓库运时,乙仓库占两仓库和的几分之几?1/2(1-1/4)=2/3甲仓库占两仓库和的几分之几?1-2/3=1/3甲仓库原来占两仓库和的几分之几?13(1-1/4)=4/9原来甲仓库时乙仓库的几分之几?4(9-4)
22、=4/5答:原来甲仓库的粮食是乙仓库的4/5。代数法解题专项一、知识要点有一些数量关系比较复杂的分数应用题,用算术方法解答比较繁、难,甚至无法列式算式,这时我们可根据题中的等量关系列方程解答。二、精讲精练【例题1】某车间生产甲、乙两种零件,生产的甲种零件比乙种零件多12个,乙种零件全部合格,甲种零件只有4/5合格,两种零件合格的共有42个,两种零件个生产了多少个?【思路导航】本体用算术方法解有一定难度,可以根据两种零件合格的一共有42个,列方程求解。解:设生产乙种零件X个,则生产甲种零件(x+12)个。(x+12)45+x=4245x+9+x=4295x=429又3/5x=1818+12=30
23、(个)答:甲种零件生产了30个,乙种零件生产了18个。练习1:1 .某校参加数学竞赛的女生比男生多28人,男生全部得优,女生的3/4得优,男、女生得优的一共有42人,男、女生参赛的各有多少人?2 .有两盒球,第一盒比第二盒多15个,第二盒中全部是红球,第一盒中的2/5是红球,已知红球一共有69个,两盒球共有多少个?3 .六年级甲班比乙班少4人,甲班有1/3的人、乙班有1/4的人参加课外数学组,两个班参加课外数学组的共有29人,甲、乙两班共有多少人?【例题2】阅览室看书的学生中,男生比女生多10人,后来男生减少1/4,女生减少1/6,剩下的男、女生人数相等,原来一共有多少名学生在阅览室看书?【思
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 六年级 举一反三 典型 例题 详细 讲解 练习
链接地址:https://www.desk33.com/p-547001.html