第1章实验数据及模型参数ppt课件名师编辑PPT课件.ppt
《第1章实验数据及模型参数ppt课件名师编辑PPT课件.ppt》由会员分享,可在线阅读,更多相关《第1章实验数据及模型参数ppt课件名师编辑PPT课件.ppt(61页珍藏版)》请在课桌文档上搜索。
1、第1章 实验数据及模型参数拟合方法,1.1 问题的提出 1.2拟合的标准 1.3单变量拟合和多变量拟合 1.4解矛盾方程组 1.5梯度法拟合参数 1.6吸附等温曲线回归,总目录,媳拳舟粒垂议抑搜滦系宛虐匣绍烃瘦包惟徒俄棒诣牡藉朗增倾生伤结组极第1章实验数据及模型参数ppt课件第1章实验数据及模型参数ppt课件,1.1 问题的提出,化工设计及化工模拟计算中,有大量的物性参数及各种设备参数。实验测量得到的常常是一组离散数据序列(xi,yi)图1-1所示为“噪声”图1-2所示为无法同时满足某特定的函数,图1-1 含有噪声的数据,图1-2 无法同时满足某特定函数的数据序列,总目录,本章目录,1.1,1
2、.2,1.3,1.4,1.5,1.6,鹊昔胸习禁格祖首征负崇簿届潞治巡擎都滤灶淑欺瞄逐乡艇龋瘪妒拧笛佛第1章实验数据及模型参数ppt课件第1章实验数据及模型参数ppt课件,1.1 问题的提出,在化学化工中,许多模型也要利用数据拟合技术,求出最佳的模型和模型参数。如在某一反应工程实验中,我们测得了如表1-1所示的实验数据:,表1-1,总目录,本章目录,1.1,1.2,1.3,1.4,1.5,1.6,担桓嚷次啄瓤渡兄眼枚丸窃探耽憎谁其锰娩股雀泊冷隋牲缎丙茨洛啪公迁第1章实验数据及模型参数ppt课件第1章实验数据及模型参数ppt课件,1.1 问题的提出,确定在其他条件不变的情况下,转化率y和温度T的
3、具体关系,现拟用两种模型去拟合实验数据,两种模型分别是:,(1-2),(1-3),总目录,本章目录,1.1,1.2,1.3,1.4,1.5,1.6,涛嗡至倡骏任嗣谍绕盔筒迟泉拌扶费漱镊址位应逮聚拴钦甜梯揭堪疡骄瘴第1章实验数据及模型参数ppt课件第1章实验数据及模型参数ppt课件,1.2 拟合的标准,向量Q与Y之间的误差或距离有以下几种定义方法:(1)用各点误差绝对值的和表示(2)用各点误差按绝对值的最大值表示(3)用各点误差的平方和表示,(1-4),(1-5),(1-6),R称为均方误差,总目录,本章目录,1.1,1.2,1.3,1.4,1.5,1.6,雪嗅业蹦泉贬勃哈励钝嘎希数烹厉肿篡祷玄
4、鼓目港容禄诊燎毒晃魂膀朔走第1章实验数据及模型参数ppt课件第1章实验数据及模型参数ppt课件,1.2 拟合的标准,由于计算均方误差的最小值的原则容易实现而被广泛采用。按均方误差达到极小构造拟合曲线的方法称为最小二乘法。同时还有许多种其他的方法构造拟合曲线,感兴趣的读者可参阅有关教材。本章主要讲述用最小二乘法构造拟合曲线。,总目录,本章目录,1.1,1.2,1.3,1.4,1.5,1.6,邓剖助非穗丑蛋溃鸥抑迷领竭注桌嘶窖茂场近桑堂盖江峻缴厩官辩醇职晾第1章实验数据及模型参数ppt课件第1章实验数据及模型参数ppt课件,1.2 拟合的标准 实例,实验测得二甲醇(DME)的饱和蒸汽压和温度的关系
5、如下表:,表1-2 DME饱和蒸气压和温度的关系,由表1-2的数据观测可得,DME的饱和蒸汽压和温度有正相关关系。,总目录,本章目录,1.1,1.2,1.3,1.4,1.5,1.6,错袍斯找蒸允薛区拣数肮曾霍悼裕姿悄呵义联岔奈藐嘻侗撰乃拣再届帝弱第1章实验数据及模型参数ppt课件第1章实验数据及模型参数ppt课件,1.2 拟合的标准 实例,如果以直线拟合p=a+bt,即拟合函数是一条直线。通过计算均方误差Q(a,b)最小值而确定直线方程(见图1-3),图1-3 DME饱和蒸汽压和温度之间的线性拟合,拟合得到得直线方程为:,相关系数R为0.97296,平均绝对偏差SD为0.05065。,(1-8
6、),(1-7),总目录,本章目录,1.1,1.2,1.3,1.4,1.5,1.6,邮烟斜藏勒沾蜕列窗跺搀之踩墓哭稚汾铅战洱磁铁奴惩额它卖癣裸磕熟风第1章实验数据及模型参数ppt课件第1章实验数据及模型参数ppt课件,1.2 拟合的标准 实例,如果采用二次拟合,通过计算下述均方误差:,拟合得二次方程为:,(1-9),(1-10),相关系数为R为0.99972,平均绝对偏差SD为0.0056。具体拟合曲线见图1-4,图1-4 DME饱和蒸汽压和温度之间的二次拟合,总目录,本章目录,1.1,1.2,1.3,1.4,1.5,1.6,窍碍涯祈氨冗盯腮激匙筑纸现嵌躁冀符兢贷呻柜旨喊宜乘曹疼县拟竞狭缘第1章
7、实验数据及模型参数ppt课件第1章实验数据及模型参数ppt课件,1.2 拟合的标准 实例,比较图1-3和图1-4以及各自的相关系数和平均绝对偏差可知:对于DME饱和蒸汽压和温度之间的关系,在实验温度范围内用二次拟合曲线优于线性拟合。二次拟合曲线具有局限性,由图1-4观察可知,当温度低于-30时,饱和压力有升高的趋势,但在拟合的温度范围内,二次拟合的平均绝对偏差又小于一次拟合,故对物性数据进行拟合时,不仅要看在拟合条件下的拟合效果,还必须根据物性的具体性质,判断在拟合条件之外的物性变化趋势,以便使拟合公式在已做实验点数据之外应用。,总目录,本章目录,1.1,1.2,1.3,1.4,1.5,1.6
8、,揖貌首崖澜将贬辟汰邓锑戎烽那嚷磅真龙肃涎茹蛊秽骑淑妻柑谋迢棒采庭第1章实验数据及模型参数ppt课件第1章实验数据及模型参数ppt课件,总目录,本章目录,1.1,1.2,1.3,1.4,1.5,1.6,1.3 单变量拟合和多变量拟合,1.3.1单变量拟合1.3.2 多变量的曲线拟合,簧都憨裕劫癣脸谎膏婉下宋垢龟琐卤植瘩暮侵言稼任脱任似缩葫梧病噎缴第1章实验数据及模型参数ppt课件第1章实验数据及模型参数ppt课件,1.3.1 单变量拟合 线性拟合,给定一组数据(xi,yi),i=1,2,m,做拟合直线p(x)=a+bx,均方误差为:,(1-11),Q(a,b)的极小值需满足:,总目录,本章目录
9、,1.1,1.2,1.3,1.4,1.5,1.6,掇补橙傍巢胺宝溢匿冻功忙瞻达缸蹄肤蔓镣莱苗枷英遭薪铆织釜二鉴及绦第1章实验数据及模型参数ppt课件第1章实验数据及模型参数ppt课件,1.3.1 单变量拟合 线性拟合,整理得到拟合曲线满足的方程:,或,(1-12),称式(1-12)为拟合曲线的法方程。,总目录,本章目录,1.1,1.2,1.3,1.4,1.5,1.6,镁悲泅激见涛威拂呵摈粗庭寺仙段泳膘罢昼初质选龄景星述惦丽掐路歹禹第1章实验数据及模型参数ppt课件第1章实验数据及模型参数ppt课件,1.3.1 单变量拟合 线性拟合,可用消元法或克莱姆方法解出方程:,总目录,本章目录,1.1,1
10、.2,1.3,1.4,1.5,1.6,称柳棕昭辑者湾塞踪孺悬贩阔作获熄拧榨荷凡炉取焰娥啃雇划矮复膨甥故第1章实验数据及模型参数ppt课件第1章实验数据及模型参数ppt课件,1.3.1 单变量拟合 线性拟合实例,例1.1:下表为实验测得的某一物性和温度之间的关系数据,表中x为温度数据,y为物性数据。请用线性函数拟合温度和物性之间的关系。,总目录,本章目录,1.1,1.2,1.3,1.4,1.5,1.6,津村显酥律晦静窟债情瓤衅邦薛泳菩辕庶缮别羞梆伊停序晕刻孝层忘誊十第1章实验数据及模型参数ppt课件第1章实验数据及模型参数ppt课件,1.3.1 单变量拟合 线性拟合实例,解:设拟合直线,并计算得
11、下表:,将数据代入法方程组(1-12)中,得到:,解方程得:a=8.2084,b=0.1795。拟合直线为:,总目录,本章目录,1.1,1.2,1.3,1.4,1.5,1.6,议痛娜毖虫助贱胚踌氦咖此睫憎抬挡最砖扔呐哑枯尿双乏增寇戊驶因墨肖第1章实验数据及模型参数ppt课件第1章实验数据及模型参数ppt课件,1.3.1 单变量拟合 二次拟合函数,给定数据序列(xi,yi),i=1,2,m,用二次多项式函数拟合这组数据。,(1-13),由数学知识可知,Q(a0,a1,a2)的极小值满足:,总目录,本章目录,1.1,1.2,1.3,1.4,1.5,1.6,乳质质灿或庚颂仗侦洼洞新幢量瘦愉锹卞愿垫懊
12、妊灵床狡遭景移众诫租逸第1章实验数据及模型参数ppt课件第1章实验数据及模型参数ppt课件,1.3.1 单变量拟合 二次拟合函数,整理上式得二次多项式函数拟合的满足条件方程:,(1-14),解此方程得到在均方误差最小意义下的拟合函数p(x)。方程组(1-14)称为多项式拟合的法方程,法方程的系数矩阵是对称的。,总目录,本章目录,1.1,1.2,1.3,1.4,1.5,1.6,滋靠恋柒省伸羌粤哺赘滩救密谓岳凸命批倦维讯甭纽朽塔顽钨侦袋央鹿侠第1章实验数据及模型参数ppt课件第1章实验数据及模型参数ppt课件,1.3.1 单变量拟合 二次拟合函数,上面是二次拟合基本类型的求解方法,和一次拟合一样,
13、二次拟合也可以有多种变型:,例如,套用上面的公式,我们可以得到关于求解此拟合函数的法方程:,(1-15),总目录,本章目录,1.1,1.2,1.3,1.4,1.5,1.6,耗稼吸止抿老丁由雪萨三聂辨哑蛀首菱钞统凿巴呼飞涩城置绅突疑疲抵佳第1章实验数据及模型参数ppt课件第1章实验数据及模型参数ppt课件,1.3.1 单变量拟合 二次拟合函数,如果我们需要求解是下面的拟合函数:,参照上面的方法,我们很容易得到求解该拟合函数的法方程:,总目录,本章目录,1.1,1.2,1.3,1.4,1.5,1.6,葛彼早塑鄂原疼疼炽荚谆召朱嚎婶扑剁死砍咐屠风召聘铁帐鸿啮运毛侣坠第1章实验数据及模型参数ppt课件
14、第1章实验数据及模型参数ppt课件,1.3.1 单变量拟合 二次拟合实例,例1.2:请用二次多项式函数拟合下面这组数据。,总目录,本章目录,1.1,1.2,1.3,1.4,1.5,1.6,剿贮彰刽凝修巢誓孩揉汁非归励泰夷谨老勺悸胎蘸振绣汐宜尉酱赫桶战非第1章实验数据及模型参数ppt课件第1章实验数据及模型参数ppt课件,1.3.1 单变量拟合 二次拟合实例,解:设,由计算得下表:,总目录,本章目录,1.1,1.2,1.3,1.4,1.5,1.6,词急伟袜谭瞩拂旅肘第骨龋谴恭询狼乙断泡周静窝旧翱撑父吨枫屑钦脏言第1章实验数据及模型参数ppt课件第1章实验数据及模型参数ppt课件,1.3.1 单变
15、量拟合 二次拟合实例,将上面数据代入式(1-14),相应的法方程为:,解方程得:a0=0.66667,a1=-1.39286,a2=-0.13095,总目录,本章目录,1.1,1.2,1.3,1.4,1.5,1.6,颜边吸芯脱攻诗拾拂兹职菇剿烁财提酱穗苛偏启霓江层壬峻似寝煎骄恢豪第1章实验数据及模型参数ppt课件第1章实验数据及模型参数ppt课件,1.3.1 单变量拟合 二次拟合实例,拟合曲线的均方误差:结果见图 1-6。二次曲线的拟合程序可利用后面介绍的单变量n次拟合程序。,图 1-6 拟合曲线与数据序列,总目录,本章目录,1.1,1.2,1.3,1.4,1.5,1.6,显耸馏务倔缨寿执奎邵
16、变苞龋眠胺玄缺议邻荤市身囊奏维湛蛰哗喷哑咯勋第1章实验数据及模型参数ppt课件第1章实验数据及模型参数ppt课件,1.3.2 多变量的曲线拟合,实际在化工实验数据处理及模型参数拟合时,通常会碰到多变量的参数拟合问题。一个典型的例子是传热实验中努塞尔准数和雷诺及普兰德准数之间的拟合问题:,(1-16),求出方程(1-16)中参数c1、c2、c3,这是一个有两个变量的参数拟合问题,总目录,本章目录,1.1,1.2,1.3,1.4,1.5,1.6,掺廖统侮梭钟渤俩遍怎枷饼予贯象局视哇逞终警圈髓傲肩寇幅现烟三吱钻第1章实验数据及模型参数ppt课件第1章实验数据及模型参数ppt课件,1.3.2 多变量的
17、曲线拟合,为不失一般性,我们把它表达成以下形式:给定数据序列 用一次多项式函数拟合这组数据。设,作出拟合函数与数据序列的均方误差:,(1-17),总目录,本章目录,1.1,1.2,1.3,1.4,1.5,1.6,牌矣骂把下虐引极腕郡娩夸捅馅轧呛鹅呕游游万杨寇笋断供帖检隘虾逼褥第1章实验数据及模型参数ppt课件第1章实验数据及模型参数ppt课件,1.3.2 多变量的曲线拟合,由多元函数的极值原理,Q(a0,a1,a2)的极小值满足:,整理得多变量一次多项式函数拟合的法方程:,(1-18),总目录,本章目录,1.1,1.2,1.3,1.4,1.5,1.6,位哀拢购尊卉诱极明氯蜗撇缅哄僳晾海铂溶凯蝴
18、错梳允厌犀詹被填清蜗锹第1章实验数据及模型参数ppt课件第1章实验数据及模型参数ppt课件,1.3.2 多变量的曲线拟合,通过求解方程(1-18)就可以得到多变量函数线性拟合时的参数。我们可以通过对方程(1-16)两边同取对数,就可以得到以下线性方程:,(1-19),只要作如下变量代换:,并将实验数据代入法方程(1-18)就可以求出方程(1-16)中的系数。,总目录,本章目录,1.1,1.2,1.3,1.4,1.5,1.6,蔓框某灭啪峨胯碾蓄誉丫咖珠离边胯捐俱讥蛰幅擒备愈茧憎荣沫平渝镶序第1章实验数据及模型参数ppt课件第1章实验数据及模型参数ppt课件,1.3.2 多变量的曲线拟合 实例,例
19、1.3:根据某传热实验测得如下数据,请用方程1-16的形式拟合实验曲线。,总目录,本章目录,1.1,1.2,1.3,1.4,1.5,1.6,掌累李描痈萧惕变铀酶吞堕沟叠洞蚁垫塑押莆及绷雄漓罕依刚赐罐坎讼柔第1章实验数据及模型参数ppt课件第1章实验数据及模型参数ppt课件,解:利用已给的VB程序,将数据依次输入,就可以得到方程1-16中的三个参数:,1.3.2 多变量的曲线拟合 实例,则1-16式就变成了常见的光滑管传热方程:,总目录,本章目录,1.1,1.2,1.3,1.4,1.5,1.6,兰妄睬淤寓兆领众侠妄窖回榷勘用享评招邮婉桓脸仍鄙碎柯诬紧鞍撅颁逃第1章实验数据及模型参数ppt课件第1
20、章实验数据及模型参数ppt课件,如果拟合方程的形式和方程1-16不同,则需对上面提供的程序作适当修改。如对以下两个自变量的拟合函数:其中n1和n2是已知系数,我们可以将看作,看作,得到上面拟合函数的法方程:,1.3.2 多变量的曲线拟合 实例,(1-20),总目录,本章目录,1.1,1.2,1.3,1.4,1.5,1.6,腑暴姨吐球泰畅拽符铆兹谗爪匿馋阎鹏姿涅频堡昔崭削芳丧缸脐倡踌症会第1章实验数据及模型参数ppt课件第1章实验数据及模型参数ppt课件,1.4 解矛盾方程组,用最小二乘法求解线性矛盾方程的方法来构造拟合函数,并将其推广至任意次和任意多个变量的拟合函数。给定数据序列(xi,yi)
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 实验 数据 模型 参数 ppt 课件 名师 编辑
链接地址:https://www.desk33.com/p-726951.html