2019深度学习方法及应用.docx
《2019深度学习方法及应用.docx》由会员分享,可在线阅读,更多相关《2019深度学习方法及应用.docx(132页珍藏版)》请在课桌文档上搜索。
1、深度学习方法及应用目录1引言11.1 深度学习的定义与背景21.2 本书的结构安排52深度学习的历史73三类深度学习网络173.1 三元分类方式183.2 无监督和生成式学习深度网络193.3 监督学习深度网络233.4 混合深度网络254深度自编码器种无监督学习方法294.1 弓I言304.2 利用深度自编码器来提取语音特征304.3 堆叠式去噪自编码器374.4 转换自编码器375预训练的深度神经网络种混合方法395.1 受限玻尔兹曼机405.2 无监督逐层预训练435. 3DNN和HMM结合456深度堆叠网络及其变形有监督学习476.1 简介486.2 深度堆叠网络的基本结构496.3
2、一种学习DSN权值的方法506.4 张量深度堆叠网络516.5核化深度堆叠网络547语音和音频处理中的应用591.1 语音识别中声学模型的建立601.2 语音合成761.3 音频和音乐处理778在语言模型和自然语言处理中的相关应用798 .1语言模型809 .2自然语言处理849信息检索领域中的应用939.1 信息检索简介949.2 用基于深度自编码器的语义哈希方法对文档进行索引和检索959.3 文档检索中的深度结构语义模型959.4 信息检索中深度堆叠网络的应用10110在目标识别和计算机视觉中的应用1031.1 1无监督或生成特征学习1041.2 有监督特征学习和分类10611多模态和多任
3、务学习中的典型应用11311.1 多模态:文本和图像11411.2 多模态:语音和图像11811.3 在语音、自然语言处理或者图像领域的多任务学习12012结论125附录1291. 1深度学习的定义与背景2006年,深度结构学习(经常被称作深度学习或分层学习)作为机器学习研究的一个新的领域出现了12J63)在过去的几年里由深度学习发展而来的一些科学技术对信号和信息处理的各个方面都产生了深远的影响这种影响不仅存在于传统领域也存在于诸如机器学习和人工智能等一些里要的新兴领域中;对于此类研究文献”20.24.77.94.161.412迸行了概述,媒体报道237也有所涉及,近年来很多研讨会、教程、期刊
4、专刊或专就会议都对深度学习及其在信号和信息处理中的各种应用进行了专门的研讨活动其中包括- 2008年NIPS(NeuralInformationProcessingSystems,神经信息处理系统)深度学习研讨会(2008NIPSDeepLearningWorkshop);- 2009年NIPS关于深度学习的语音识别及相关应用的研讨会(2009NIPSWorkshoponDeepLearningforSpeechRecognitionandRelatedApplications);- 2009年国际机器学习大会(IntematiOnalConferenceonMachineLearning,I
5、CML)关于学习特征的研讨会(2009ICMLWorkshoponLearningFeatureHierarchies);- 2011年国际机器学习大会关于语音和视觉信息处理中学习架构、表示和最优化的研讨会(20IllCMLWorkShoPOnLearningArChiteCtUres,Representations,andOptimizationforSpeechandVisualInformationProcessing);- 2012年ICASSP(InternationalConferenceonAcoustics,SpeechandSignalProcessing,国际声学,语音与信
6、号处理会议)关于在信号和信息处理中深度学习应用的研讨会(2012ICASSPTutorialonDeepLearningforSignalandInformationProcessing);- 2012年国际机器学习大会关于学习表示的研讨会(2012ICMLWorkshoponRepresentationLearning);- 2012年IEEE音频、语音和语言处理(T-ASLP,1月)会刊中有关语音和语言处理中深度学习专栏(2012SpecialSectiononDeepLearningforSpeechandLanguageProcessinginIEEETransactionsonAud
7、io,Speech,andLanguageProcessing(T-ASLP,January);- 2010,2011和2012年NlPS关于深度学习和无监督特征学习的研讨会(2010.2011,and2012NIPSWorkshopsonDeepLearningandUnsupervisedFeatureLearning);- 2013年NIPS关于深度学习和输出表示学习的研讨会(2013NIPSWorkshopsonDeepLearningandonOutputRepresentationLearning);- 2013年IEEE模式分析和机器智能(T-PAML9月)的杂志中有关学习深度架
8、构的特刊(2013SpecialIssueonLearningDeepArchitecturesinIEEETransactionsonPatternAnalysisandMachineIntelligence(T-PAMI1September);- 2013年关于学习表示的国际会议(2013InternationalConferenceonLearningRepresentations);- 2013年国际机器学习大会关于表示学习面临的挑战研讨会(2013ICMLWorkshoponRepresentationLearningChallenges);- 2013年国际机器学习大会关于音频、语
9、音和语言处理中深度学习的研讨会(2013ICMLWorkshoponDeepLearningforAudio,Speech,andLanguageProcessing);- 2013年ICASSP关于语音识别中的新型神经网络以及相关应用专栏(2013ICASSPSpecialSessiononNewTypesofDeepNeuralNetworkLearningforSpeechRecognitionandRelatedApplications)本书的作者一直从事深度学习的研究,也组织或参与过上述中的一些重要会议以及特刊的编写工作。要特别提出的是,本书作者频频受邀在众多重要会议上对深度学习进行
10、专题报告,而本书的部分内容也是基于这些报告内容整理而成的。在开始详细介绍深度学习的内容之前,我们有必要先了解一些基本概念,下面是一些与深度学习密切相关的概念和描述:- 定义1:”机器学习是一类利用多个非线性信息处理层来完成监督或者无监督的特征提取和转化,以及模式分析和分类等任务的技术J一定义2:“深度学习是机器学习的子领域,它是一种通过多层表示来对数据之间的复杂关系进行建模的算法。高层的特征和概念取决于低层的特征和概念,这样的分层特征叫做深层,其中大多数模型都基于无监督的学习表示。”(2012年3月维基百科对深度学习的定义。)一定义3:“深度学习是机器学习的子领域,它是基于多层表示的学习,每层
11、对应一个特定的特征、因素或概念。高层概念取决于低层概念,而且同一低层的概念有助于确定多个高层概念。深度学习是基于表示学习的众多机器学习算法中的一员。一个观测对象(比如一张图片)可以用很多种方式表示(如像素的一个向量),但是有的表示则可以使基于训练样本的学习任务变得更容易(如判定某张图像是否为人脸图像)。这一研究领域试图解决一个问题:哪些因素可以产生更好的表示,以及对于这些表示应该如何学习。”(2013年2月维基百科对深度学习的定义。)一定义4:“深度学习是机器学习的一系列算法,它试图在多个层次中进行学习,每层对应于不同级别的抽象。它一般使用人工神经网络,学习到的统计模型中的不同层对应于不同级别
12、的概念。高层概念取决于低层概念,而且同一低层的概念有助于确定多个高层概念。”(2013年10月维基百科对深度学习的最新定义。)一定义5:“深度学习是机器学习研究的一个新领域,它的出现将机器学习向人工智能这一目标进一步拉近。深度学习是对多层表示和抽象的学习,它使一些包括如图像、声音和文本的数据变得有意义J(参看网址:https:/githubcom/Iisa-lab/DeepLearningTutoriaIs)应该注意的是,本书所讨论的深度学习是使用深度结构来对信号和信息进行处理,而不是对信号或信息的深度理解.尽管在有的情况下这两个方面可能会比较相似。在教育心理学中,是这样定义深度学习的:“深度
13、学习是描述学习的一种方法,其特点是:主动参与、内在激励和个人对意义的探索J(http:www.blackwellreference,compublictocnode?id=g9781405161251_chunk,g97814051612516_ss1-1)我们应该注意将深度学习与教育心理学中的这些被滥用的术语区别开来。在上述多个不同的高层描述中有两个重要的共同点:(1)都包含多层或多阶非线性信息处理的模型;(2)都使用了连续的更高、更抽象层中的监督或无监督学习特征表示的方法。深度学习是包括神经网络、人工智能、图模型、最优化、模式识别和信息处理的交叉领域,它今天之所以如此受欢迎,有三个重要原因
14、:其一,芯片处理性能的巨大提升(比如,通用图形处理器);其二,用于训练的数据爆炸性增长;其三,近来,机器学习和信号/信息处理研究有了很大进展,这些都使深度学习方法可以有效利用复杂的非线性函数和非线性的复合函数来学习分布和分层的特征表示,并且可以充分有效地利用标注和非标注的数据。近年来活跃在机器学习领域的研究机构包括众多高校,比如多伦多大学、纽约大学、加拿大蒙特利尔大学、斯坦福大学、加州大学伯克利分校、加州大学、伦敦大学学院、密歇根大学、麻省理工学院、华盛顿大学,还有一些企业,如微软研究院(从2009年开始)、谷歌(大概从2011年开始)、旧M研究院(大概从2011年开始)、百度(从2012开始
15、)、Facebook(从2013年开始)、IDlAP研究所、瑞士人工智能研究所等。参看网址:这些研究机构将深度学习方法成功地用于计算机领域的众多应用中,其中包括:计算机视觉、语音识别、语音搜索、连续语音识别、语言与图像的特征编码、语义话语分类、自然语言理解、手写识别、音频处理、信息检索、机器人学,甚至有一个关于分子生物学的研究指出在深度学习方法的引领下发现了新的药物1.2本书的结构安排本书后续章节按照以下结构进行编排:在第2章中,我们将简要对深度学习的历史加以回顾,主要从以下三个问题入手:第一,深度学习对语音识别技术有哪些影响。第二,这一重大科技革命是如何开始的。第三,它是如何获得并保持如此强
16、大动力的。第3章讲述了深度学习中绝大多数研究所使用的三元分类法。其中包括:有监督、无监督和混合深度学习网络。在分类任务中,混合深度学习网络利用无监督学习(或称为预训练)来辅助下一个阶段的监督学习。有监督和混合深度神经网络通常都具有同一类型的深度网络体系或结构,但是无监督深度网络的结构却往往不同。第46章分别集中介绍了深度结构的三种主流类型,这三种类型都来源于第3章中所提到的三元分类法。在第4章中,深度自编码器作为无监督深度学习网络的经典方法,我们将详细对其进行介绍并加以讨论。虽然其中巧妙地利用到了反向传播这样的监督学习算法,但是在学习的过程中并没有使用类别标签信息,而是将输入信号本身作为“监督
17、”信号。第5章作为混合深度网络分类的主要实例讲解部分.详细介绍了这种用无监督生成式的预训练方法来提高监督训练效率的深度学习网络。在训练数据有限,并且没有其他合话的正则化方法(如dropout)可利用的情况下,混合深度学习网络是很有用的。这种独特的预训练方法是以受限玻尔兹曼机和本章所要学习的深度学习网络为基础的,它开启了深度学习在语音识别和其他信息处理任务中的早期应用,具有很重要的历史意义。除了回顾综述以外,我们也讨论了混合深度学习网络的后续发展和近期出现的一些不同观点。第6章详细讨论了基于三元分类法的判别式、有监督深度神经网络的一些具体实例一基本的深度堆叠式网络及其扩展。这类深度网络的工作原理
18、与深度神经网络在很多方面都有所不同。需要特别指出的是,它们在建立宏观深度网络的层或模块时采用目标作为标签来简化学习算法。另外,深度网络中的部分假设,如模块中输出单元呈线性的假设,也简化了网络的学习算法,使得我们可以构建和学习比第4章和第5章中网络更丰富的架构。第711章选取了一些深度学习在信号和信息处理各个领域中成功的典型应用。第7章回顾了深度学习在语音识别、语音合成和音频处理中的应用,文献综述中围绕语音识别这一主要议题的几个突出问题划分了几个小节。第8章主要介绍了深度学习在语言模型和自然语言处理中的最新应用成果.其中强调了将符号实体(如词语)转化为低维连续向量的最新进展。第9章主要集中于对深
19、度学习在信息检索(包含网页搜索)中的突出应用的介绍。第10章涉及了深度学习在计算机视觉领域中有关图像目标识别的几大应用。这一章将深度学习的方法分为两大类:(1)无监督特征学习;(2)端对端的监督学习以及特征间的学习和分类。第11章主要介绍了深度学习在多模态处理和多任务学习中的几大应用。我们根据输入到深度学习系统中的多模态数据特征将其分为三类。对于语音、文本或图像的单模态数据,本文也回顾了基于深度学习方法的一些多任务学习研究。最后,第12章对本书内容进行了总结,并对深度学习将面临的挑战和它的发展方向进行了讨论。本书内容精短,包括了几位作者提供的专题报告,一次是2011年10月APSIPA会议上的
20、报告,另一次是2012年3月ICASSP会议上的报告。另外,本书也根据领域内的进展,提供了大量更新到2014年1月的内容(包括在2013年12月举办的NIPS-2013和IEEE-ASRU-2013两次会议中的一些资料),这些内容主要集中于近几年快速发展的深度学习研究和技术的应用层面。深度学习的历史以前,绝大多数机器学习和信号处理技术都利用浅层结构,这些结构一般包含最多一到两层的非线性特征变换,这种状况直到近几年才得以改变。浅层结构包括高斯混合模型(GMM)、线性或非线性动力系统、条件随机场(CRF)s最大嫡模型(MaXEnt)、支持向量机(SVM)、逻辑回归(LR)、核回归以及多层感知器(M
21、LP)(包括极限学习器而且只包含一个隐层)。例如,当使用核方法时,支持向量机就会使用一个只包含一个或零个特征转换层的浅层线性模式的分离模型(最近由深度学习发展而来的一些核方法尤其值得注意,请参见文献9,53,102,377)o已经证明,浅层结构在解决很多简单的或者限制较多的问题上效果明显,但是由于其建模和表示能力有限,在遇到实际生活中一些更复杂的涉及自然信号(比如人类语音、自然声音和语言、自然图像和视觉场景)的问题时就会遇到各种困难。然而,人类信息处理机制(比如视觉和听觉)总是需要深度结构从丰富的感官输入信息中提取复杂结构并构建内部表示。例如,由于人类语言的产出和感知系统都具有清晰的层结构,这
22、就使得信息可以从波形层转换到语言层11.12.74,75。同理人类视觉系统也有分层的特点这些虽然基本都只是存在于感知层面但有趣的是有时候在产出时也有分层的特点43.126.287。我们相信如果能提出更高效且更有效的深度学习算法那么用于处理这种自然信号的最前沿技术也将进一步得到提高,深度学习的概念起源于对人工神经网络的研究(所以有时候可能会听到“新一代神经网络”的说法)。前馈神经网络或具有多隐层的多层感知器也叫做深度神经网络(DeepNeuraINetwork,DNN)是深度结构模型中很好的范例。反向传播算法(back-propagation)流行于20世纪80年代,是广为人知的一种学习算法,在
23、学习网络参数上很有用。遗憾的是,仅仅使用反向传播算法在实际学习隐层数目较少的网络时效果并不是很好3,侬。在优化目标为非凸函数的深度神经网络中,来自局部最优化或其他最优化问通的挑战普遍存在,这些挑战通常是学习中面临的主要困难。反向传播算法基于局部梯度信息并往往从一些随机的初始点开始当使用批量梯度下降或随机梯度下降的反向传播算法时目标函数经常会陷入局部最优的境地,随着网络层数的加深局部最优的情况也就会变得酸来瓢严重。之所以出现上述问题,部分原因在于:我们虽然对小现模的神经网络的探究从未间断过(2.叫但是大多数机器学习和信号处理研究方向有所偏离人们将重点从对神经网络的研究转移到对具有凸损失函数的浅层
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2019 深度 学习方法 应用
链接地址:https://www.desk33.com/p-727146.html