第3章多元线性回归.ppt
《第3章多元线性回归.ppt》由会员分享,可在线阅读,更多相关《第3章多元线性回归.ppt(59页珍藏版)》请在课桌文档上搜索。
1、第三章 多元线性回归,3.1 多元线性回归模型3.2 回归参数的估计3.3 参数估计量的性质3.4 回归方程的显著性检验3.5 中心化和标准化3.6 相关阵与偏相关系数3.7 本章小结与评注,3.1 多元线性回归模型,一、多元线性回归模型的一般形式,y=0+1x1+2x2+pxp+,3.1 多元线性回归模型,一、多元线性回归模型的一般形式,对n组观测数据(xi1,xi2,xip;yi),i=1,2,n,线性回归模型表示为:,3.1 多元线性回归模型,一、多元线性回归模型的一般形式,写成矩阵形式为:y=X+,其中,3.1 多元线性回归模型,二、多元线性回归模型的基本假定,1.解释变量x1,x2,
2、xp是确定性变量,不是随机变量,且要求rk(X)=p+1n。表明设计矩阵X中的自变量列之间不相关,X是一满秩矩阵。,3.1 多元线性回归模型,二、多元线性回归模型的基本假定,2.随机误差项具有0均值和等方差,即,这个假定称为Gauss-Markov条件,3.1 多元线性回归模型,二、多元线性回归模型的基本假定,3.正态分布的假定条件为:,用矩阵形式(3.5)式表示为:,N(0,s2In),3.1 多元线性回归模型,二、多元线性回归模型的基本假定,在正态假定下:,yN(X,s2In),E(y)=Xvar(y)=s2In,3.1 多元线性回归模型,三、多元线性回归方程的解释,y表示空调机的销售量,
3、x1表示空调机的价格,x2表示消费者可用于支配的收入。,y=0+1x1+2x2+E(y)=0+1x1+2x2,在x2保持不变时,有,在x1保持不变时,有,3.1 多元线性回归模型,三、多元线性回归方程的解释,考虑国内生产总值GDP和三次产业增加值的关系,GDP=x1+x2+x3,现在做GDP对第二产业增加值x2的一元线性回归,得回归方程,3.1 多元线性回归模型,3.1 多元线性回归模型,三、多元线性回归方程的解释,建立GDP对x1和x2的回归,得二元回归方程,=2 914.6+0.607 x1+1.709 x2,你能够合理地解释两个回归系数吗?,3.2 回归参数的估计,一、回归参数的普通最小
4、二乘估计,最小二乘估计要寻找,3.2 回归参数的估计,一、回归参数的普通最小二乘估计,3.2 回归参数的估计,一、回归参数的普通最小二乘估计,经整理后得用矩阵形式表示的正规方程组,移项得,存在时,即得回归参数的最小二乘估计为:,3.2 回归参数的估计,二、回归值与残差,为回归值,称为帽子矩阵,其主对角线元素记为hii,则,3.2 回归参数的估计,二、回归值与残差,此式的证明只需根据迹的性质tr(AB)=tr(BA),因而,3.2 回归参数的估计,二、回归值与残差,cov(e,e)=cov((I-H)Y,(I-H)Y)=(I-H)cov(Y,Y)(I-H)=2(I-H)In(I-H)=2(I-H
5、),得 D(ei)=(1-hii)2,i=1,2,n,3.2 回归参数的估计,二、回归值与残差,是2的无偏估计,3.2 回归参数的估计,三、回归参数的最大似然估计,yN(X,2In),似然函数为,等价于使(y-X)(y-X)达到最小,这又完全与OLSE一样,3.2 回归参数的估计,例3.1国际旅游外汇收入是国民经济发展的重要组成部分,影响一个国家或地区旅游收入的因素包括自然、文化、社会、经济、交通等多方面的因素,本例研究第三产业对旅游外汇收入的影响。中国统计年鉴把第三产业划分为12个组成部分,分别为x1农林牧渔服务业,x2地质勘查水利管理业,x3交通运输仓储和邮电通信业,x4批发零售贸易和餐饮
6、业,x5金融保险业,x6房地产业,x7社会服务业,x8卫生体育和社会福利业,x9教育文化艺术和广播,x10科学研究和综合艺术,x11党政机关,x12其他行业。采用1998年我国31 个省、市、自治区的数据,以国际旅游外汇收入(百万美元)为因变量y,以如上12 个行业为自变量做多元线性回归,数据见表3.1,其中自变量单位为亿元人民币。,3.2 回归参数的估计,3.3 参数估计量的性质,性质1 是随机向量y的一个线性变换。,性质2,是的无偏估计。,3.3 参数估计量的性质,3.3 参数估计量的性质,当p=1时,3.3 参数估计量的性质,性质4 Gauss-Markov定理,预测函数,是 的线性函数
7、,Gauss-Markov定理 在假定E(y)=X,D(y)=2In时,的任一线性函数 的最小方差线性无偏估计(Best Lnear Unbiased Estimator简记为BLUE)为c,其中c是任一p+1维向量,是的最小二乘估计。,3.3 参数估计量的性质,第一,取常数向量c的第j(j=0,1,n)个分量为1,其余分量为0,这时G-M定理表明最小二乘估计是j的最小方差线性无偏估计。第二,可能存在y1,y2,yn的非线性函数,作为 的无偏估计,比最小二乘估计 的方差更小。第三,可能存在 的有偏估计量,在某种意义(例如均方误差最小)下比最小二乘估计 更好。第四,在正态假定下,是 的最小方差无
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 多元 线性 回归
链接地址:https://www.desk33.com/p-740151.html