第5章耦合电感元件合理想变压器.ppt
《第5章耦合电感元件合理想变压器.ppt》由会员分享,可在线阅读,更多相关《第5章耦合电感元件合理想变压器.ppt(40页珍藏版)》请在课桌文档上搜索。
1、1,第5章 耦合电感元件和理想变压器,5.1 耦 合 电 感 元 件,5.4 理 想 变 压 器,5.3 空心变压器电路的分析,5.2 耦合电感的去耦等效,返回,2,学 习 目 标l理解互感线圈、互感系数、耦合系数的含义。l理解互感电压和互感线圈的同名端。l掌握互感线圈串联、并联去耦等效及T型去耦等效方法。l 掌握空芯变压器电路在正弦稳态下的分析方法回路分析法。l理解理想变压器的含义。熟练掌握理想变压 器变换电压、电流及阻抗的关系式。,3,5.1 耦合电感元件,5.1.1 耦合电感的概念,图5-1是两个相距很近的线圈(电感),当线圈1中通入电流 i1时,在线圈1中就会产生自感磁通11,而其中一
2、部分磁通21,它不仅穿过线圈1,同时也穿过线圈2,且2111。同样,若在线圈2中通入电流 i2,它产生的自感磁通22,其中也有一部分磁通12不仅穿过线圈2,同时也穿过线圈1,且12 22。像这种一个线圈的磁通与另一个线圈相交链的现象,称为磁耦合,即互感。21 和12 称为耦合磁通或互感磁通。,4,假定穿过线圈每一匝的磁通都相等,则交链线圈1的自感磁链与互感磁链分别为11=N111,12=N112;交链线圈2的自感磁链与互感磁链分别为22=N222,21=N221。,图 5-1 磁通互助的耦合电感(更正:右边电感磁通22 箭头应向下),5,上面一式表明线圈1对线圈2的互感系数M21,等于穿越线圈
3、2的互感磁链与激发该磁链的线圈1中的电流之比。二式表明线圈2对线圈1的互感系数M12,等于穿越线圈1的互感磁链与激发该磁链的线圈2中的电流之比。可以证明。M21=M12=M,类似于自感系数的定义,互感系数的定义为:,我们以后不再加下标,一律用M表示两线圈的互感系数,简称互感。互感的单位与自感相同,也是亨利(H)。因为2111,1222,所以可以得出,6,两线圈的互感系数小于等于两线圈自感系数的几何平均值,即,上式仅说明互感M比 小(或相等),但并不能说明M比 小到什么程度。为此,工程上常用耦合系数K来表示两线圈的耦合松紧程度,其定义为 则,可知,0K1,K值越大,说明两个线圈之间耦合越紧,当K
4、=1时,称全耦合,当K=0时,说明两线圈没有耦合。,7,耦合系数K的大小与两线圈的结构、相互位置以及周围磁介质有关。如图5-2(a)所示的两线圈绕在一起,其K值可能接近1。相反,如图5-2(b)所示,两线圈相互垂直,其K值可能近似于零。由此可见,改变或调整两线圈的相互位置,可以改变耦合系数K的大小。,图 5-2,8,5.1.2 耦合电感元件的电压、电流关系 当有互感的两线圈上都有电流时,交链每一线圈的磁链不仅与该线圈本身的电流有关,也与另一个线圈的电流有关。如果每个线圈的电压、电流为关联参考方向,且每个线圈的电流与该电流产生的磁通符合右手螺旋法则,而自感磁通又与互感磁通方向一致,即磁通相助,如
5、图5-1所示。这种情况,交链线圈1、2的磁链分别为:,9,由电磁感应定律,当通过线圈的电流变化时,线圈两端会产生感应电压,式中、分别为线圈1、2的自感电压,、分别为线圈1、2的互感电压。如果自感磁通与互感磁通的方向相反,即磁通相消,如图5-3所示,耦合电感的电压、电流关系方程式为:,10,图5-3 磁通相消的耦和电感,11,对以上磁通相助、相消两种情况进行归纳总结,可以得出:自感电压、取正还是取负,取决于本电感的u、i的参考方向是否关联,若关联,自感电压取正;反之取负。而互感电压、的符号这样确定:当两线圈电流均从同名端流入(或流出)时,线圈中磁通相助,互感电压与该线圈中的自感电压同号。即自感电
6、压取正号时互感电压亦取正号,自感电压取负号时互感电压亦取负号;否则,当两线圈电流从异名端流入(或流出)时,由于线圈中磁通相消,故互感电压与自感电压异号,即自感电压取正号时互感电压取负号,反之亦然。,12,5.1.3 同名端,线圈的同名端是这样规定的:具有磁耦合的两线圈,当电流分别从两线圈各自的某端同时流入(或流出)时,若两者产生的磁通相助,则这两端叫作互感线圈的同名端,用黑点“”或星号“*”作标记。,例如,对图5-4(a),当i1、i2分别由端纽a和d流入(或流出)时,它们各自产生的磁通相助,因此a端和d端是同名端(当然b端和c端也是同名端);a端与c端(或b端与d端)称异名端。,图 5-4
7、同 名 端,13,有了同名端规定后,像图5-4(a)所示的互感线圈在电路中可以用图5-5(b)所示的模型表示,在图5-5(b)中,设电流i1、i2分别从a、d端流入,磁通相助,如果再设各线圈的 u、i为关联参考方向,那么两线圈上的电压分别为,如果像图5-5(c)所示,设i1仍从a端流入,而i2从d端流出,可以判定磁通相消,那么两线圈上的电压分别为,14,图 5-5(b)(d)磁通相助;(c)(e)磁通相消,15,对于已标定同名端的耦合电感,可根据u、i的参考方向以及同名端的位置写出其u-i关系方程。也可以将耦合电感的特性用电感元件和受控电压源来模拟,例如图5-5(b)、(c)电路可分别用(d)
8、、(e)电路来代替。可以看出:受控电压源(互感电压)的极性与产生它的变化电流的参考方向对同名端是一致的。这样,将互感电压模拟成受控电压源后,可直接由图5-5(d)、(e)写出两线圈上的电压,使用这种方法,在列写互感线圈ui关系方程时,会感到非常方便。,16,5.2 耦合电感的去耦等效,5.2.1 耦合电感的串联等效,耦合电感的串联有两种方式顺接和反接。顺接就是异名端相接,如图5-6(a)所示。,图 5-6 耦合电感顺接串联,17,把互感电压看作受控电压源后得电路如图5-6(b)所示,由该图可得,其中 L=L1+L2+2M 由此可知,顺接串联的耦合电感可以用一个等效电感L来代替,等效电感L的值由
9、式上式来定。耦合电感的另一种串联方式是反接串联。反接串联是同名端相接,如图5-7(a)所示,把互感电压看作受控电压源后得电路如图5-7(b)所示,由图(b)图可得,18,其中 L=L1+L2-2M,图 5-7 耦合电感的反接串联,由此可知,反接串联的耦合电感可以用一个等效电感L代替,等效电感L的值由上式来定。,19,5.2.2 耦合电感的T型等效,1、互感线圈的同名端连在一起 如图5-8所示,为三支路共一节点、其中有两条支路存在互感的电路,由图可知,L1的b端与L2的d端是同名端且连接在一起,两线圈上的电压分别为,图 5-8 同名端相连的T型去耦等效电路,20,将以上两式经数学变换,可得,画出
10、两式T型等效电路如图5-8(b)所示。在图(b)中因有3个电感相互间无互感,它们的自感系数分别为L1-M、L2-M和M,又连接成T型结构形式,所以称之为互感线圈的T型去耦等效电路。,21,2、互感线圈的异名端连接在一起,图5-9(a)与图5-8(a)两电路相比较结构一样,只是具有互感的两支路的异名端连接在一起,两线圈上的电压分别为,图5-9 异名端相连的T型去耦等效电路,22,同样将以上两式经数学变换,可得,画得T型等效电路如图5-9(b)所示,这里(b)图中-M为一等效的负电感。利用上述等效电路,可以得出如图5-10(a)和(c)所示的耦合电感并联的去耦等效电路,分别如图5-10(b)和(d
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 耦合 电感 元件 理想 变压器
链接地址:https://www.desk33.com/p-747967.html