第9讲光纤通信新技术1.ppt
《第9讲光纤通信新技术1.ppt》由会员分享,可在线阅读,更多相关《第9讲光纤通信新技术1.ppt(42页珍藏版)》请在课桌文档上搜索。
1、第九讲(1),光通信新技术,2023/11/8,2,PDH系统 SDH系统波分复用 WDM 密集波分复用 DWDM副载波复用通信新型光纤研制光放大技术光交换技术 相干光通信光弧子通信,目前光纤通信的热点,研究方向最终实现全光通信!,2023/11/8,3,主要内容,一、波分复用WDM 二、光弧子通信三、全光通信网四、光接入技术,2023/11/8,4,波分复用 Wavelength Division Multiplexing WDM频分复用 Frequency Division Multiplexing FDM FDM与WDM在本质上是没有区别的。通常把光载波间隔在1nm以上的系统称为WDM或
2、DWDM;当光载波间隔在1nm以下的系统称为FDM时分复用 Time Division Multiplexing TDM 将一帧时间T划分为n个时隙,每一个时隙只传输固定的信道,与TDM相比,OTDM中电光和光电转换分别位于复用之前和解复用之后,电子器件及E/O和O/E变换单元只工作于支路信号速率上。目前技术难点在于接收精确同步。空分复用 Space Division Multiplexing SDM副载波复用 Subcarrier Division Multiplexing SCM,第一节 波分复用WDM各种复用方式,2023/11/8,5,1.波分复用的基本概念 波分复用是光纤通信中的一种
3、传输技术,它利用了一根光纤可以同时传输多个不同波长的光载波的特点,把光纤可能应用的波长范围划分成若干个波段,每个波段用作一个独立的通道传输一种预定波长的光信号。通常将波分复用缩写为WDM。光波分复用的实质是在光纤上进行光频分复用每个波长之间的间隔宽度也有差别。按照通道间隔的差异,WDM可以细分为:WWDM(Wide-WDM,通道间隔等于或者大于25nm)MWDM(Mid-WDM,通道间隔小于25 nm,而大于3.2 nm)DWDM(Dense-WDM,通道间隔小于或者等于3.2 nm)。通道可以是等间隔的,也可以是非等间隔的。,2023/11/8,6,2.单模光纤的频带资源,光纤的带宽很宽。如
4、图所示,在光纤的两个低损耗传输窗口:波长为1.31um(1.251.35um)的窗口,相应的带宽为17700 GHz;波长为 1.55um(1.501.60um)窗口,相应的带宽为12500 GHz。两个窗口合在一起,总带宽超过30 THz。如果信道频率间隔为10GHz,在理想情况下,一根光纤可以容纳3000个信道。,2023/11/8,7,DWDM系统是在1550 nm波长区段内,同时用8,16或更多个波长在一对光纤上(也可采用单光纤)构成的光通信系统,其中各个波长之间的间隔为1.6 nm、0.8 nm或更低,约对应于200 GHz,100 GHz或更窄的带宽。WDM、DWDM和OFDM在本
5、质上没有多大区别 以往技术人员习惯采用WDM 和DWDM来区分是1310/1550 nm 简单复用还是在1550 nm波长区段内密集复用,但目前在电信界应用时,都采用DWDM技术。由于1310/1550 nm的复用超出了EDFA的增益范围,只在一些专门场合应用,所以经常用WDM这个更广义的名称来代替DWDM。,2023/11/8,8,WDM技术对网络升级、发展宽带业务(如CATV,HDTV 和IP over WDM等)、充分挖掘光纤带宽潜力、实现超高速光纤通信等具有十分重要意义,尤其是WDM加上EDFA更是对现代信息网络具有强大的吸引力。目前,“掺铒光纤放大器(EDFA)+密集波分复用(WDM
6、)+非零色散光纤(NZDSF,即G.655光纤)+光子集成(PIC)”正成为国际上长途高速光纤通信线路的主要技术方向。,2023/11/8,9,如果一个区域内所有的光纤传输链路都升级为WDM传输,我们就可以在这些WDM链路的交叉(结点)处设置以波长为单位对光信号进行交叉连接的光交叉连接设备(OXC),或进行光上下路的光分插复用器(OADM),则在原来由光纤链路组成的物理层上面就会形成一个新的光层。在这个光层中,相邻光纤链路中的波长通道可以连接起来,形成一个跨越多个OXC和OADM的光通路,完成端到端的信息传送,并且这种光通路可以根据需要灵活、动态地建立和释放,这就是目前引人注目的、新一代的WD
7、M全光网络。,2023/11/8,10,光波分复用器和解复用器是WDM技术中的关键部件,将不同波长的信号结合在一起经一根光纤输出的器件称为复用器(也叫合波器)。反之,经同一传输光纤送来的多波长信号分解为各个波长分别输出的器件称为解复用器(也叫分波器)。从原理上讲,这种器件是互易的(双向可逆),即只要将解复用器的输出端和输入端反过来使用,就是复用器。因此复用器和解复用器是相同的(除非有特殊的要求)。,3.WDM系统的基本形式,2023/11/8,11,WDM系统的基本构成主要有以下两种形式:1)双纤单向传输。单向WDM传输是指所有光通路同时在一根光纤上沿同一方向传送。如图所示,在发送端将载有各种
8、信息的、具有不同波长的已调光信号1,2,n通过光复用器组合在一起,并在一根光纤中单向传输。由于各信号是通过不同光波长携带的,因而彼此之间不会混淆。在接收端通过光解复用器将不同波长的信号分开,完成多路光信号传输的任务。反方向通过另一根光纤传输的原理与此相同。,2023/11/8,12,WDM系统的基本形式(续),(2)单纤双向传输。双向WDM传输是指光通路在一根光纤上同时向两个不同的方向传输。如图所示,所用波长相互分开,以实现双向全双工的通信。(关键点),2023/11/8,13,WDM系统的基本形式(续),双向WDM系统在设计和应用时必须要考虑几个关键的系统因素:为了抑制多通道干扰(MPI),
9、必须注意到光反射的影响、双向通路之间的隔离、串扰的类型和数值、两个方向传输的功率电平值和相互间的依赖性、光监控信道(OSC)传输和自动功率关断等问题。同时要使用双向光纤放大器,所以双向WDM系统的开发和应用相对说来要求较高,但与单向WDM系统相比,双向WDM系统可以减少使用光纤和线路放大器的数量。,2023/11/8,14,四、光波分复用器的性能参数,另外,通过在中间设置光分插复用器(OADM)或光交叉连接器(OXC),可使各波长光信号进行合流与分流,实现波长的上下路(AddDrop)和路由分配,这样就可以根据光纤通信线路和光网的业务量分布情况,合理地安排插入或分出信号。光波分复用器是波分复用
10、系统的重要组成部分,为了确保波分复用系统的性能,对波分复用器的基本要求是:插入损耗小,隔离度大,带内平坦,带外插入损耗变化陡峭,温度稳定性好,复用通路数多,尺寸小等。,2023/11/8,15,4.光波分复用器的性能参数,(1)插入损耗。插入损耗是指由于增加光波分复用器解复用器而产生的附加损耗,定义为该无源器件的输入和输出端口之间的光功率之比,即 a10lg Pi/P0(dB)其中Pi为发送进输入端口的光功率;P0为从输出端口接收到的光功率。(2)串扰抑制度。串扰是指其他信道的信号耦合进某一信道,并使该信道传输质量下降的影响程度,有时也可用隔离度来表示这一程度。对于解复用器 Cij=-10lg
11、 Pij/Pi(dB)其中Pi是波长为i的光信号的输入光功率,Pij是波长为i的光信号串入到波长为j信道的光功率。,2023/11/8,16,4.光波分复用器的性能参数(续),(3)回波损耗。回波损耗是指从无源器件的输入端口返回的光功率与输入光功率的比,即 RL10 lg Pr/Pj(dB)其中Pj为发送进输入端口的光功率,Pr为从同一个输入端口接收到的返回光功率。(4)反射系数。反射系数是指在WDM器件的给定端口的反射光功率P,与入射光功率A之比,即 R10 lg Pr/Pj(dB)(5)工作波长范围。工作波长范围是指WDM器件能够按照规定的性能要求工作的波长范围。(6)信道宽度。信道宽度是
12、指各光源之间为避免串扰应具有的波长间隔。,2023/11/8,17,5.WDM系统的基本结构 实际的WDM系统主要由五部分组成:光发射机、光中继放大、光接收机、光监控信道和网络管理系统,如下图所示。,2023/11/8,18,光发射机位于WDM系统的发送端。在发送端首先将来自终端设备(如SDH端机)输出的光信号,利用光转发器(OTU)把符合ITU-T G.957建议的非特定波长的光信号转换成符合ITU-T G.692建议的具有稳定的特定波长的光信号。OTU对输入端的信号波长没有特殊要求,可以兼容任意厂家的SDH信号,其输出端满足G.692的光接口,即标准的光波长和满足长距离传输要求的光源;利用
13、合波器合成多路光信号;通过光功率放大器(BA:Booster Amplifier)放大输出多路光信号。,2023/11/8,19,用掺铒光纤放大器(EDFA)对光信号进行中继放大。在应用时可根据具体情况,将EDFA用作“线放(LA:Line Amplifier)”,“功放(BA)”和“前放(PA:Preamplifier)”。在WDM系统中,对EDFA必须采用增益平坦技术,使得EDFA对不同波长的光信号具有接近相同的放大增益。与此同时,还要考虑到不同数量的光信道同时工作的各种情况,保证光信道的增益竞争不影响传输性能。在接收端,光前置放大器(PA)放大经传输而衰减的主信道光信号,分波器从主信道光
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 光纤通信 新技术
链接地址:https://www.desk33.com/p-756335.html