正交试验方差分析资料报告通俗易懂.doc
《正交试验方差分析资料报告通俗易懂.doc》由会员分享,可在线阅读,更多相关《正交试验方差分析资料报告通俗易懂.doc(12页珍藏版)》请在课桌文档上搜索。
1、word第十一章 正交设计试验资料的方差分析在实际工作中 ,常常需要同时考察 3个或3个以上的试验因素 ,假设进展全面试验,如此试验的规模将很大 ,往往因试验条件的限制而难于实施 。 正交设计是安排多因素试验 、寻求最优水平组合的一种 高效率试验设计方法。 第一节、正交设计原理和方法 (一) 正交设计的根本概念 正 交 设 计 是利用正交表来安排多因素试验、分析试验结果的一种设计方法。它从多因素试验的全部水平组合中挑选局部有代表性的水平组合进展试验,通过对这局部试验结果的分析了解全面试验的情况,找出最优水平组合。例如, 研究氮、磷、钾肥施用量对某小麦品种产量的影响: A因素是氮肥施用量,设A1
2、、A2、A3 3个水平 ; B因素是磷肥施用量,设B1、B2、B3 3个水平 ; C因素是钾肥施用量,设C1、C2、C3 3个水平。 这是一个3因素每个因素3水平的试验 ,各因素的水平之间全部可能的组合有27种。如果进展全面试验 ,可以分析各因素的效应 ,交互作用,也可选出最优水平组合。 但全面试验包含的水平组合数较多,工作量大 ,由于受试验场地、经费等限制而难于实施 。 如果试验的主要目的是寻求最优水平组合,如此可利用正交设计来安排试验。 正交设计的根本特点是:用局部试验来代替全面试验,通过对局部试验结果的分析,了解全面试验的情况。 正交试验是用局部试验来代替全面试验,它不可能像全面试验那样
3、对各因素效应、交互作用一一分析;当交互作用存在时,有可能出现交互作用的混杂。如对于上述3因素每个因素3水平试验,假设不考虑交互作用,可利用正交表L9(34)安排,试验方案仅包含9个水平组合,就能反映试验方案包含27个水平组合的全面试验的情况,找出最优的生产条件。一、正交设计的根本原理表11-1 33试验的全面试验方案正交设计就是从全面试验点水平组合中挑选出有代表性的局部试验点水平组合来进展试验。图1中标有9 个试验点,就是利用正交表L9(34)从27个试验点中挑选出来的9个试验点。即: (1)A1B1C1 (2)A1B2C2 (3)A1B3C3 (4)A2B1C2 (5)A2B2C3 (6)A
4、2B3C1 (7)A3B1C3 (8)A3B2C1 (9)A3B3C2上述选择 ,保证了A因素的每个水平与B因素 、 C 因 素的各个水平在试验中各搭配一次。 从图1中可以看到,9个试验点分布是均衡的 ,在立方体的每个平面上 有且仅有3个试验点;每两个平面的交线上有且仅有1个试验点。 9个试验点均衡地分布于整个立方体 ,有很强的代表性,能够比拟全面地反映全面试验的根本情况。 二、正交表与其特性 (一) 正交表 表 11-2 是L8(27)正交表,其中 “L代表正交表;L 右下角的数字“8表示有8行,用这正交表安排试验包含8个处理 (水平组合) ;括号的底数“2 表示因素的水平数,括号 2的指数
5、“7表示有7列,用这正交表最多可以安排7个2水平因素。 表11-2 L8(27)正交表2水平正交表还有L4(23)、L16(215)等; 3水平正交表有L9(34)、L27(313) 、 等。 (二) 正交表的特性 1、任一列中,不同数字出现的次数一样 例如L8(27)中不同数字只有1和2,它们各出现4次;L9(34)中不同数字有1、2和3,它们各出现3次 。2、任两列中,同一横行所组成的数字对出现的次数一样 例如 L8(27)的任两列中(1, 1), (1, 2), (2, 1), (2, 2)各出现两次;L9(34)任两列中 (1, 1), (1, 2), (1, 3), (2, 1),
6、(2, 2), (2, 3), (3, 1), (3, 2), (3, 3)各出现1次。即每个因素的一个水平与另一因素的各个水平互碰次数相等,明确任意两列各个数字之间的搭配是均匀的。 用正交表安排的试验,具有均衡分散和整齐可比的特点。 均衡分散,是指用正交表挑选出来的各因素 水 平 组合在全部水平组合中的分布是均衡的 。 由 图11-1可以看出,在立方体中 ,任一平面都包含 3 个 试验点, 任两平面的交线上都包含1个试验点。整齐可比是指每一个因素的各水平间具有可比性。 因为正交表中每一因素的任一水平下衡地包含着另外因素的各个水平,当比拟某因素不同水平时,其它因素的效应都彼此抵消。如在A、B、
7、C 3个因素中,A因素的 3 个水平 A1、A2、A3 条件下各有 B、C 的 3 个不同水平,即: 在这9个水平组合中,A因素各水平下包括了B、C因素的3个水平,虽然搭配方式不同,但B、C皆处于同等地位,当比拟A因素不同水平时,B因素不同水平的效应相互抵消,C因素不同水平的效应也相互抵消。所以A因素3个水平间具有可比性。同样,B、C因素3个水平间亦具有可比性。(三) 正交表的类别 1、一样水平正交表 各列中出现的最大数字一样的正交表称为一样水平正交表。 L4(23)、L8(27)、L12(211)等各列中最大数字为2,称为两水平正交表; L9(34)、L27(313)等各列中最大数字为3,称
8、为3水平正交表。2、 混合水平正交表 各列中出现的最大数字不完全一样的正交表称为 混合水平正交表。 L8(4124)表中有一列最大数字为4,有4列最大数字为2。 也就是说该表可以安排1个4水平因素和4个2水平因素。 L16(4423),L16(4212)等都混合水平正交表。三、正交设计方法 【例111】 某水稻栽培试验选择了3个水稻优良品种(A):二九矮、高二矮、窄叶青 , 3种密度(B): 15、20、25万苗/666.7m2;3种施氮量(C): 3、5、8kg/666.7m2,试采用正交设计安排一个试验方案。 (一) 确定试验因素与其水平, 列出因素水平表表11-3 因素水平表(二) 选用
9、适宜的正交表 根据因素、水平与需要考察的交互作用的多少来选择适宜的正交表。 选用正交表的原如此是:既要能安排下试验的全部因素(包括需要考查的交互作用),又要使局部水平组合数处理数尽可能地少。一般情况下,试验因素的水平数应恰好等于正交表记号中括号的底数;因素的个数包括需要考查交互作用应不大于正交表记号中括号的指数;各因素与交互作用的自由度之和要小于所选 正交表 的 总 自由度,以便估计试验误差。 假设各因素与交互作用的自由度之和等于所选正交表总自由度,如此可采用有重复正交试验来估计试验误差。此例有3个3水平因素,假设不考察交互作用,如此各因素自由度之和为因素个数 (水平数-1) = 3 (3-1
10、) =6,小于L9(34)总自由度 9-1=8,故可以选用L9(34); 假设要考察交互作用,如此应选用L27(313),此时所安排的试验方案实际上是全面试验方案。(三) 表头设计 表头设计就是把挑选出的因素和要考察的交互作用分别排入正交表的表头适当的列上。 在不考察交互作用时,各因素可随机安排在各列上;假设考察交互作用,就应按该正交表的交互作用列表安排 各 因 素与交互作用。此例不考察交互作用,可将品种(A)、密度(B)和施氮量 (C)依次安排在L9(34)的第1、2、3列上,第4 列 为空列,见表2-4。表11-4 表头设计L934表头设计L8(27) 表头设计(四) 列出试验方案 把正交
11、表中安排因素的各列(不包含欲考察的交互作用列)中的每个数字依次换成该因素的实际水平,就得到一个正交试验方案。 表11-5 正交试验方案第二节 正交试验资料的方差分析 假设各号试验处理都只有一个观测值,如此称之为单个观测值正交试验;假设各号试验处理都有两个或两个以上观测值,如此称之为有重复观测值正交试验。一、 单个观测值正交试验资料的方差分析 对【例11-1】用L9(34)安排试验方案后,各号试验只进展一次,试验结果列于表2-6。试对其进展方差分析。表11-6 正交试验结果计算表Ti为各因素同一水平试验指标之和 ,T为9个试验号的试验指标之和; 为各因素同一水平试验指标的平均数。 该试验的9个观
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 正交 试验 方差分析 资料 报告 通俗易懂
文档标签
- 义务教育课程标准实验教科书数学五级下册
- 5大庆钻井院大庆油田首钻双分支水平井钻井实践
- 数据库SQLServer-实验3答案-教辅-教材
- 小麦品种
- 关于构建更高水平的全民健身公共服务体系的意见全文
- 实验3-对称密码算法DES
- 建筑用卡轨抗震性能试验
- 广联达安装算量教程通俗易懂很清楚分析
- 通俗易懂
- 气藏型储气库基础资料数据表动态分析模板
- 数据库课程设计实验报告-火车票售票管理系统方案
- 光学多道实验报告
- 实验报告一-使用ENVI进行影像镶嵌
- 实验2在气轨上研究瞬时速度
- 实验二多种液体混合控制
- 实验三-数字图像的空间域滤波
- 实验一机械能转化实验指导书含演示操作
- 实验一实验基本操作规范
- 实验一光纤的几何特性测试实验
- 实验22-MOSFET的低频CV特性测量
链接地址:https://www.desk33.com/p-7801.html