introductory-econometrics-for-finance--Chapter4-solutions.docx
《introductory-econometrics-for-finance--Chapter4-solutions.docx》由会员分享,可在线阅读,更多相关《introductory-econometrics-for-finance--Chapter4-solutions.docx(13页珍藏版)》请在课桌文档上搜索。
1、SolutionstotheReviewQuestionsattheEndofChapter41. Inthesamewayaswemakeassumptionsaboutthetruevalueofbetaandnottheestimatedvalues,wemakeassumptionsaboutthetrueunobservabledisturbancetermsratherthantheirestimatedcounterparts,theresiduals.Weknowtheexactvalueoftheresiduals,sincetheyaredefinedbyli=H一.Sow
2、edonotneedtomakeanyassumptionsabouttheresidualssincewealreadyknowtheirvalue.Wemakeassumptionsabouttheunobservableerrortermssinceitisalwaysthetruevalueofthepopulationdisturbancesthatwearereallyinterestedin,althoughweneveractuallyknowwhattheseare.2. Wewouldliketoseenopatternintheresidualplot!Ifthereis
3、apatternintheresidualplot,thisisanindicationthatthereisstillsomeaction”orvariabilityleftiny?thathasnotbeenexplainedbyourmodel.Thisindicatesthatpotentiallyitmaybepossibletoformabettermodel,perhapsusingadditionalorcompletelydifferentexplanatoryvariables,orbyusinglagsofeitherthedependentorofoneormoreof
4、theexplanatoryvariables.Recallthatthetwoplotsshownonpages157and159,wheretheresidualsfollowedacyclicalpattern,andwhentheyfollowedanalternatingpatternareusedasindicationsthattheresidualsarepositivelyandnegativelyautocorrelatedrespectively.Anotherproblemifthereisa,patternz,intheresidualsisthat,ifitdoes
5、indicatethepresenceofautocorrelation,thenthismaysuggestthatourstandarderrorestimatesforthecoefficientscouldbewrongandhenceanyinferenceswemakeaboutthecoefficientscouldbemisleading.3. Theratiosforthecoefficientsinthismodelaregiveninthethirdrowafterthestandarderrors.Theyarecalculatedbydividingtheindivi
6、dualcoefficientsbytheirstandarderrors.=0.638+0.402及L0.891胃=o.96灰?=o.89(0.436)(0.291)(0.763)f-ratios1.461.38-1.17Theproblemappearstobethattheregressionparametersareallindividuallyinsignificant(i.e.notsignificantlydifferentfromzero),althoughthevalueofR2anditsadjustedversionarebothveryhigh,sothatthereg
7、ressiontakenasawholeseemstoindicateagoodfit.Thislookslikeaclassicexampleofwhatwetermnearmulticollinearity.Thisiswheretheindividualregressorsareverycloselyrelated,sothatitbecomesdifficulttodisentangletheeffectofeachindividualvariableuponthedependentvariable.Thesolutiontonearmulticollinearitythatisusu
8、allysuggestedisthatsincetheproblemisreallyoneofinsufficientinformationinthesampletodetermineeachofthecoefficients,thenoneshouldgooutandgetmoredata.Inotherwords,weshouldswitchtoahigherfrequencyofdataforanalysis(e.g.weeklyinsteadofmonthly,monthlyinsteadofquarterlyetc.).Analternativeisalsotogetmoredata
9、byusingalongersampleperiod(i.e.onegoingfurtherbackintime),ortocombinethetwoindependentvariablesinaratio(e.g.xztW).Other;moreadhocmethodsfordealingwiththepossibleexistenceofnearmulticollinearitywerediscussedinChapter4:-Ignoreit:ifthemodelisotherwiseadequate,i.e.statisticallyandintermsofeachcoefficien
10、tbeingofaplausiblemagnitudeandhavinganappropriatesign.Sometimes,theexistenceofmulticollinearitydoesnotreducetheratiosonvariablesthatwouldhavebeensignificantwithoutthemulticollinearitysufficientlytomaketheminsignificantItisworthstatingthatthepresenceofnearmulticollinearitydoesnotaffecttheBLUEproperti
11、esoftheOLSestimator-i.e.itwillstillbeconsistent,unbiasedandefficientsincethepresenceofnearmulticollinearitydoesnotviolateanyoftheCLRMassumptions1-4.However,inthepresenceofnearmulticollinearity,itwillbehardtoobtainsmallstandarderrors.Thiswillnotmatteriftheaimofthemodel-buildingexerciseistoproducefore
12、castsfromtheestimatedmodel,sincetheforecastswillbeunaffectedbythepresenceofnearmulticollinearitysolongasthisrelationshipbetweentheexplanatoryvariablescontinuestoholdovertheforecastedsample.-Droponeofthecollinearvariables-sothattheproblemdisappears.However,thismaybeunacceptabletotheresearcheriftherew
13、erestrongaprioritheoreticalreasonsforincludingbothvariablesinthemodel.Also,iftheremovedvariablewasrelevantinthedatageneratingprocessforytanomittedvariablebiaswouldresult.-Transformthehighlycorrelatedvariablesintoaratioandincludeonlytheratioandnottheindividualvariablesintheregression.Again,thismaybeu
14、nacceptableiffinancialtheorysuggeststhatchangesinthedependentvariableshouldoccurfollowingchangesintheindividualexplanatoryvariables,andnotaratioofthem.4. (a)TheassumptionofKomoscedasticityisthatthevarianceoftheerrorsisconstantandfiniteovertime.Technically,wewrite(b) Thecoefficientestimateswouldstill
15、bethe“correctones(assumingthattheotherassumptionsrequiredtodemonstrateOLSoptimalityaresatisfied),buttheproblemwouldbethatthestandarderrorscouldbewrong.Henceifweweretryingtotesthypothesesaboutthetrueparametervalues,wecouldendupdrawingthewrongconclusions.Infact,forallofthevariablesexcepttheconstant,th
16、estandarderrorswouldtypicallybetoosmall,sothatwewouldenduprejectingthenullhypothesistoomanytimes.(c) Thereareanumberofwaystoproceedinpractice,including-UsingKeteroscedasticityrobuststandarderrorswhichcorrectfortheproblembyenlargingthestandarderrorsrelativetowhattheywouldhavebeenforthesituationwheret
17、heerrorvarianceispositivelyrelatedtooneoftheexplanatoryvariables.-Transformingthedataintologs,whichhastheeffectofreducingtheeffectoflargeerrorsrelativetosmallones.5.(a)ThisiswherethereisarelationshipbetweenthehandTthresiduals.RecallthatoneoftheassumptionsoftheCLRMwasthatsucharelationshipdidnotexist.
18、Wewantourresidualstoberandom,andifthereisevidenceofautocorrelationintheresiduals,thenitimpliesthatwecouldpredictthesignofthenextresidualandgettherightanswermorethanhalfthetimeonaverage!(b) TheDurbinWatsontestisatestforfirstorderautocorrelation.Thetestiscalculatedasfollows.Youwouldrunwhateverregressi
19、onyouwereinterestedin,andobtaintheresiduals.Thencalculatethestatistic(-J2DW=2=22r-2YouwouldthenneedtolookupthetwocriticalvaluesfromtheDurbinWatsontables,andthesewoulddependonhowmanyvariablesandhowmanyobservationsandhowmanyregressors(excludingtheconstantthistime)youhadinthemodel.Therejection/non-reje
20、ctionrulewouldbegivenbyselectingtheappropriateregionfromthefollowingdiagram:Reject:positiveInconclusiveautocorrelationIIIDonotrejectRejectH:NOevidenceInconclusivenegativeofautocorrelationautocorrelationIIIIodLdu24-du4-dL4(c) Wehave60observations,andthenumberofregressorsexcludingtheconstanttermis3.Th
21、eappropriatelowerandupperlimitsare1.48and1.69respectively,sotheDurbinWatsonislowerthanthelowerlimit.Itisthusclearthatwerejectthenullhypothesisofnoautocorrelation.Soitlooksliketheresidualsarepositivelyautocorrelated.(d) a=四+Bax+故3,+BaZ+w,Theproblemwithamodelentirelyinfirstdifferences,isthatoncewecalc
22、ulatethelongrunsolution,allthefirstdifferencetermsdropout(asinthelongrunweassumethatthevaluesofallvariableshaveconvergedontheirownlongrunvaluessothatyt=yt-etc.)Thuswhenwetrytocalculatethelongrunsolutiontothismodel,wecannotdoitbecausethereisn,talongrunsolutiontothismodel!(e) Ayr=AI+0axli+Psx2t-+3-+匕T
23、heanswerisyes,thereisnoreasonwhywecannotuseDurbinWatsoninthiscase.Youmayhavesaidnoherebecausetherearelaggedvaluesoftheregressors(thexvariables)variablesintheregression.InfactthiswouldbewrongsincetherearenolagsoftheDEPENDENT引variableandhenceDWcanstillbeused.6. Ayr=+Qx*+B4n+A-1Ar2r-1+Bs%+A-4%Themajors
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- introductory econometrics for finance Chapter4 solutions
链接地址:https://www.desk33.com/p-780707.html