人工智能第一章-绪论.docx
《人工智能第一章-绪论.docx》由会员分享,可在线阅读,更多相关《人工智能第一章-绪论.docx(13页珍藏版)》请在课桌文档上搜索。
1、第一章绪论从1956年正式提出人工智能学科算起,40多年来,取得长足的发展,成为一门广泛的交叉和前沿科学。总的说来,人工智能的目的就是让计算机这台机器能够象人一样思考。如果希望做出一台能够思考的机器,那就必须知道什么是思考,更进一步讲就是什么是智慧。什么样的机器才是智慧的呢?科学家已经作出了汽车,火车,飞机,收音机等等,它们模仿我们身体器官的功能,但是能不能模仿人类大脑的功能呢?到目前为止,我们也仅仅知道这个装在我们天灵盖里面的东西是由数十亿个神经细胞组成的器官,我们对这个东西知之甚少,模仿它或许是天下最困难的事情了。当计算机出现后,人类开始真正有了一个可以模拟人类思维的工具,在以后的岁月中,
2、无数科学家为这个目标努力着。现在人工智能已经不再是几个科学家的专利了,全世界几乎所有大学的计算机系都有人在研究这门学科,学习计算机的大学生也必须学习这样一门课程,在大家不懈的努力下,现在计算机似乎已经变得十分聪明了。例如,1997年5月,IBM公司研制的深蓝(DeePBlue)计算机战胜了国际象棋大师卡斯帕洛夫(KaSParov)。大家或许不会注意到,在一些地方计算机帮助人进行其它原来只属于人类的工作,计算机以它的高速和准确为人类发挥着它的作用。人工智能始终是计算机科学的前沿学科,计算机编程语言和其它计算机软件都因为有了人工智能的进展而得以存在。人工智能理论进入21世纪,正酝酿着新的突破-人工
3、生命的提出,不仅意味着人类试图从传统的工程技术途径,而且将开辟生物工程技术途径,去发展人工智能;同时人工智能的发展,又将作为人工生命科学的重要支柱和推动力量。可以预言:人工智能的研究成果将能够创造出更多更高级的智能”制品L并使之在越来越多的领域超越人类智能;人工智能将为发展国民经济和改善人类生活作出更大贡献。1.1 人工智能的定义和发展1.1.1 人工智能的定义国际上人工智能研究作为一门科学的前沿和交叉学科,但像许多新兴学科一样,人工智能至今尚无统一的定义。要给人工智能下个准确的定义是困难的。人类的许多活动,如解算题、猜谜语、进行讨论、编制计划和编写计算机程序,甚至驾驶汽车和骑自行车等等,都需
4、要”智能,如果机器能够执行这种任务,就可以认为机器已具有某种性质的”人工智能,不同科学或学科背景的学者对人工智能有不同的理解,提出不同的观点,人们称这些观点为符号主义(SymbOliSm)、连接主义(COnneClioniSm)和行为主义(ACIiOniSm)等,或者叫做逻辑学派(LOgiCiSm)、仿生学派(BioniCSiSm)和生理学派(PhySioIOgiSm)。此外还有计算机学派、心理学派和语言学派等。我们将在1.3节中综述他们的主要观点。这里,我们结合自己的理解来定义人工智能。这些定义是比较狭义的。定义1智能机器(intelligentmachine)能够在各类环境中自主地或交互地
5、执行各种拟人任务(anthropomorphictasks)的机器。例子1:能够模拟人的思维,进行博弈的计算机。1997年5月Ii日,一个名为“深蓝”(DeePBIUe)的IBM计算机系统战胜当时的国际象棋世界冠军盖利咔斯帕罗夫(GaITyKaSParOVr例子2:能够进行深海探测的潜水机器人。例子3:在星际探险中的移动机器人,如美国研制的火星探测车。定义2人工智能斯坦福大学的NiISSOn提出人工智能是关于知识的科学(知识的表示、知识的获取以及知识的运用),本书中首先从学科的界定来定义:人工智能(学科)是计算机科学中涉及研究、设计和应用智能机器的一个分支。它的近期主要目标在于研究用机器来模仿
6、和执行人脑的某些智能功能,并开发相关理论和技术。从人工智能所实现的功能来定义:人工智能(能力)是智能机器所执行的通常与人类智能有关的功能,如判断、推理、证明、识别、感知、理解、设计、思考、规划、学习和问题求解等思维活动。1.1.2 人工智能的起源与发展人工智能的发展是以硬件与软件为基础。它的发展经历了漫长的发展历程。人们从很早就已开始研究自身的思维形成,早在亚里士多德(公元前384-322年)在着手解释和编注他称之为三段论的演绎推理时就迈出了向人工智能发展的早期步伐,可以看作为原始的知识表达规范。什么是三段论?三段论是以真言判断为其前提的一种演绎推理,它借助于一个共同项,把两个直言判断联系起来
7、,从而得出结论C例如:一切金属都是能够熔解的;铁是金属;所以,铁是能够熔解的。亚里士多德(公元前384-322年)1.2 人类智能与人工智能1 .2.1研究认知过程的任务人的心理活动具有不同的层次,它可以与计算机的层次相比较,见图1.1。计苴机程序计邕机语言心理活动的最高层级是思维策略,中间一层是初级信息处理,最低层级是生理过程,即中枢神经系统、神经元和大脑的活动,与此相应的是计算机程序、语言和硬件。I计一机硬件(b)计算机 图1.1人类任知活动与计算机的比较1.2.2智能信息处理系统的假设物理符号系统的假设伴随有3个推论,研究认知过程的主要任务是探求高层次思维决策与初级信息处理的关系,并用计
8、算机程序来模拟人的思维策略水平,而用计算机语言模拟人的初级信息处理过程。或称为附带条件。推论一:既然人具有智能,那么他(她)就一定是个物理符号系统。推论二:既然计算机是一个物理符号系统,它就一定能够表现出智能。推论三:既然人是一个物理符号系统,计算机也是一个物理符号系统,那么我们就能够用计算机来模拟人的活动。控制论之父维纳1940年主张计算机五原则。维纳在1940年写给朋友的一封信中,对现代计算机的设计曾提出了几条原则:(1)不是模拟式,而是数字式;(2)由电子元件构成,尽量减少机械部件;(3)采用二进制,而不是十进制;(4)内部存放计算表;(5)在计算机内部存贮数据。这些原则是十分正确的。1
9、940年,维纳开始考虑计算机如何能像大脑一样工作。他发现了二者的相似性。维纳认为计算机是一个进行信息处理和信息转换的系统,只要这个系统能得到数据,机器本身就应该能做几乎任何事情。而且计算机本身并不一定要用齿轮,导线,轴,电机等部件制成。麻省理工学院的一位教授为了证实维纳的这个观点,甚至用石块和卫生纸卷制造过一台简单的能运行的计算机。维纳系统地创建了控制论,根据这一理论,一个机械系统完全能进行运算和记忆。2 .2.3人类智能的计算机模拟帕梅拉麦考达克(PamelaMCCOrdUCk)在她的著名的人工智能历史研究机器思维(MaChineWhOThink,1979)中曾经指出:在复杂的机械装置与智能
10、之间存在着长期的联系。从几世纪前出现的神话般的狂杂巨钟和机械自动机开始,人们已对机器操作的复:杂性与自身的智能活动进行直接联系。著名的英国科学家图灵被称为人工智能之父,图灵不仅创造了一个简单的通用的非数字计算模型,而且直接证明了计算机可能以某种被理解为智能的方法工作。1950年,图灵发表了题为计算机能思考吗?的论文,给人工智能下了一个定义,而且论证了人工智能的可能性。定义智慧时,如果一台机器能够通过称之为图灵实验的实验,那它就是智慧的。图灵实验的本质就是让人在不看外型的情况下不能区别是机器的行为还是人的行为时,这个机器就是智慧的。图灵测试游戏由一男(八)、一女(B)和一名询问者(C)进行;C与
11、A、B被隔离,通过电传打字机与A、B对话。询问者只知道二人的称呼是X,Y,通过提问以及回答来判断,最终作出”X是A,Y是B或者X是B,Y是A”的结论。游戏中,A必须尽力使C判断错误,而B的任务是帮助C。当一个机器代替了游戏中的A,并且机器将试图使得C相信它是一个人。如果机器通过了图灵测试,就认为它是“智慧AlanTuring(1912-1954)”的0物理符号系统假设的推论一也告诉我们,人有智能,所以他是一个物理符号系统;推论三指出,可以编写出计算机程序去模拟人类的思维活动。这就是说,人和计算机这两个物理符号系统所使用的物理符号是相同的,因而计算机可以模拟人类的智能活动过程。1.3 人工智能的
12、学派及其争论目前人工智能的主要学派:符号主义、联结主义和行为主义。任何新生事物的成长都不是一帆风顺的,人工智能也不例外。从人工智能孕育于人类社会的母胎时,就引起人们的争议。自1956年问世以来,人工智能也是在比较艰难的环境中顽强地拚搏与成长的。一方面,社会上对人工智能的科学性有所怀疑,或者对人工智能的发展产生恐惧。在一些国家(如前苏联),甚至曾把人工智能视为反科学的异端邪说。在我国那“史无前例”的年代里,也有人把人工智能作为迷信来批判,以致连“人工智能”这个名词也不敢公开提及。另一方面,科学界内部对人工智能也表示怀疑。真正的科学与任何其它真理一样,是永远无法压制的人工智能研究必将排除千难万险,
13、尤如滚滚长江,后浪推前浪,一浪更比一浪高地向前发展。在我国,人工智能科学也开始迎来了它的春天。1.3.1 人工智能的主要学派目前人工智能的主要学派有下列3家:(1)符号主义(SymbOliCiSm),又称为逻辑主义(LogiCiSm)、心理学派(PSyChIogiSm)或计算机学派(COmPUteriSm),其原理主要为物理符号系统(即符号操作系统)假设和有限合理性原理。(2)联结主义(COnneCtioniSm),又称为仿生学派(BioniCSiSm)或生理学派(PhySiolOgiSm),其原理主要为神经网络及神经网络间的连接机制与学习算法。(3)行为主义(ACtiOniSm),又称进化主
14、义(EVolUtiOniSm)或控制论学派(CybernetiCSiSm),其原理为控制论及感知-动作型控制系统。他们对人工智能发展历史具有不同的看法。1.符号主义认为人工智能源于数理逻辑。数理逻辑从19世纪末起就获迅速发展;到20世纪30年代开始用于描述智能行为。计算机出现后,又在计算机上实现了逻辑演绎系统。正是这些符号主义者,早在1956年首先采用“人工智能”这个术语。后来又发展了启发式算法T专家系统一知识工程理论与技术,并在80年代取得很大发展。符号主义曾长期一枝独秀,为人工智能的发展作出重要贡献,尤其是专家系统的成功开发与应用,为人工智能走向工程应用和实现理论联系实际具有特别重要意义。
15、在人工智能的其它学派出现之后,符号主义仍然是人工智能的主流派。这个学派的代表有纽厄尔、肖、西蒙和尼尔逊(NilSSOn)等。2 .联结主义认为人工智能源于仿生学,特别是人脑模型的研究。它的代表性成果是1943年由生理学家麦卡洛克(MCCUlk)Ch)和数理逻辑学家皮茨(PittS)创立的脑模型,即MP模型。60-70年代,联结主义,尤其是对以感知机(PerCePtrOn)为代表的脑模型的研究曾出现过热潮,由于当时的理论模型、生物原型和技术条件的限制,脑模型研究在70年代后期至80年代初期落入低潮。直到Hopfield教授在1982年和1984年发表两篇重要论文,提出用硬件模拟神经网络时,联结主
16、义又重新抬头。1986年鲁梅尔哈特(RUmelhart)等人提出多层网络中的反向传播(BP)算法。此后,联结主义势头大振,从模型到算法,从理论分析到工程实现,为神经网络计算机走向市场打下基础。现在,对ANN的研究热情仍然不减。3 .行为主义认为人工智能源于控制论。控制论思想早在40-50年代就成为时代思潮的重要部分,影响了早期的人工智能工作者。到60-70年代,控制论系统的研究取得一定进展,播下智能控制和智能机器人的种子,并在80年代诞生了智能控制和智能机器人系统。行为主义是近年来才以人工智能新学派的面孔出现的,引起许多人的兴趣与研究。1.3.2对人工智能基本理论的争论不同人工智能学派对人工智
17、能的研究方法问题也有不同的看法。这些问题涉及人工智能是否一定采用模拟人的智能的方法?若要模拟又该如何模拟?对结构模拟和行为模拟、感知思维和行为、对认知与学习以及逻辑思维和形象思维等问题是否应分离研究?是否有必要建立人工智能的统一理论系统?若有,又应以什么方法为基础?I.符号主义认为人的认知基元是符号,而且认知过程即符号操作过程。它认为人是一个物理符号系统,计算机也是一个物理符号系统,因此,我们就能够用计算机来模拟人的智能行为,即用计算机的符号操作来模拟人的认知过程。也就是说,人的思维是可操作的。它还认为,知识是信息的一种形式,是构成智能的基础。人工智能的核心问题是知识表示、知识推理和知识运用。
18、知识可用符号表示,也可用符号进行推理,因而有可能建立起基于知识的人类智能和机器智能的统一理论体系。2 .联结主义认为人的思维基元是神经元,而不是符号处理过程。它对物理符号系统假设持反对意见,认为人脑不同于电脑,并提出联结主义的大脑工作模式,用于取代符号操作的电脑工作模式。他们对人工智能发展历史具有不同的看法。3 .行为主义认为智能取决于感知和行动(所以被称为行为主义),提出智能行为的”感知-动作”模式。行为主义者认为智能不需要知识、不需要表示、不需要推理;人工智能可以象人类智能一样逐步进化(所以称为进化主义);智能行为只能在现实世界中与周围环境交互作用而表现出来。行为主义还认为:符号主义(还包
19、括联结主义)对真实世界客观事物的描述及其智能行为工作模式是过于简化的抽象,因而是不能真实地反映客观存在的。1.3.3对人工智能技术路线的争论如何在技术上实现人工智能系统、研制智能机器和开发智能产品,即沿着什么技术路线和策略来发展人工智能,也存在有不同的派别,即不同的路线。1 .专用路线强调研制与开发专用的智能计算机、人工智能软件、专用开发工具、人工智能语言和其它专用设备。2 .通用路线认为通用的计算机硬件和软件能够对人工智能开发提供有效的支持,并能够解决广泛的和一般的人工智能问题。通用路线强调人工智能应用系统和人工智能产品的开发,应与计算机立体技术和主流技术相结合,并把知识工程视为软件工程的一
20、个分支。3 硬件路线认为人工智能的发展主要依靠硬件技术。该路线还认为智能机器的开发主要有赖于各种智能硬件、智能工具及固化技术。4 .软件路线强调人工智能的发展主要依靠软件技术。软件路线认为智能机器的研制主要在于开发各种智能软件、工具及其应用系统。从上面的讨论我们可以看到,在人工智能的基本理论、研究方法和技术路线等方面,存在几种不同的学派,有着不同的论点;对其中某些观点的争论是十分激烈的。从“一枝独秀”的符号主义发展到多学派“百花争艳”,是一件大好事,必将促进人工智能的进一步发展。对人工智能各种问题的争论可能还要持续几十年甚至几百年。尽管未来的人工智能系统很可能是集各家之长的多种方法之结合,但是
21、单独研究各种方法仍然是必要的和有价值的。在努力实现某种主要目标之前,很可能有几种方法相互竞争和角逐。人工智能的研究者们已经开发和编制出许多表演系统和实用系统,这些系统显示出有限领域内的优良智能水平,有的系统甚至已具有商业价值。然而,己实现的人工智能系统仍远未达到人类所具有的那些几乎是万能的认知技巧。研究工作沿着许多不同的途径和方法继续进行,每种方法都有它的热烈的支持者和实践者。也许终有一天,他们会携起手来,并肩开创人工智能的新世界。1.4人工智能的研究和应用领域在大多数学科中存在着几个不同的研究领域,每个领域都有其特有的感兴趣的研究课题、研究技术和术语。在人工智能中,这样的领域包括语言处理、自
22、动定理证明、智能数据检索系统、视觉系统、问题求解、人工智能方法和程序语言以及自动程序设计等。在过去30多年中,己经建立了一些具有人工智能的计算机系统;例如,能够求解微分方程的,下棋的,设计分析集成电路的,合成人类自然语言的,检索情报的,诊断疾病以及控制太空飞行器和水下机器人的具有不同程度人工智能的计算机系统。1. 4.1问题求解人工智能的第一个大成就是发展了能够求解难题的下棋(如国际象棋)程序。在下棋程序中应用的某些技术,如向前看几步,并把困难的问题分成一些比较容易的子问题,发展成为搜索和问题归约这样的人工智能基本技术.今天的计算机程序能够下锦标赛水平的各种方盘棋、十五子棋和国际象棋。另一种问
23、题求解程序把各种数学公式符号汇编在一起,其性能达到很高的水平,并正在为许多科学家和工程师所应用。有些程序甚至还能够用经验来改善其性能。小知识:DeePBlue简历:1985年,美国卡内基-梅隆(Carnegie-MeIlOn)大学的博士生Feng-hsiungHSU着手研制一个国际象棋的计算机程序:Chiptest”.1989年Hsu与MurrayCampbell加入了IBM的DeepBlUe研究项目,最初研究目的是为了检验计算机的并行处理能力。几年后,研制小组开发了专用处理器,可以在每秒中计算2-3000步棋局。经历了数百次的失利,在科研人员的不断完善下,1997年,DeepBlue的硬件系
24、统采用了32节点的大规模并行结构,每个节点由8片专用的处理器同时工作,这样,系统由256个处理器组成了一个高速并行计算机系统:研究小组又不断完善了博弈的程序。DeepBlue发展为高水平的博弈大师,在国际象棋比赛规定的每步棋限时3分钟里,可以推演IOoO-2000亿步棋局。GarryKaSParoV的思考速度是200步/分。1997年5月11日,DeepBlue以3.5:2.5战胜了CarryKasparovo1.2.2 逻辑推理与定理证明逻辑推理是人工智能研究中最持久的子领域之一。其中特别重要的是要找到一些方法,只把用四种颜色标注不同的区域注意力集中在一个大型数据库中的有关事实上,留意可信的
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人工智能 第一章 绪论
链接地址:https://www.desk33.com/p-781713.html