《铣刀的热处理生产设计...docx》由会员分享,可在线阅读,更多相关《铣刀的热处理生产设计...docx(15页珍藏版)》请在课桌文档上搜索。
1、铳刀的选材及热处理生产线设计1.设计原则1.1 本次课程设计任务要求根据铳刀论的服役条件、失效形式和性能要求,在此基础上进行材料设计和选材,制定工件的加工工艺流程,制定详细的热处理工艺规范,选择热处理设备,绘制热处理车间的平面布置图。具体要求:1)每人选择一个课题,但同一课题选择不能超过5人,选择同一课题的同学组成一个小组,共同讨论,但须独立撰写完成;2)确定工件的尺寸为45012*28*75、形状和年时基数;3)详细讨论选材的依据,合金元素作用、组织与性能之间的关系;提出不少于三种的备选方案,并进行分析比较,确定一种最佳方案;4)确定工件的加工工艺流程,制定热处理工艺规范,并加以论述其依据;
2、5)根据热处理工艺选择适当的热处理设备,对主要热处理设备的炉体结构、炉膛尺寸、功率进行计算论证,年产量4万件,分4个批次生产,即每批生产1万件,确定所需炉子的台数;6)合理设计工件的热处理生产线,画出设备在车间内的平面布置图(要求用计算机绘图,图中设备用参考图例绘出,其他按照国家标准画出)。1.2热处理零件结构形状设计需要热处理的工件,在设计时,除了应考虑服役条件、承受载荷的大小和机械加工工艺外,还要要考虑热处理的变形、开裂所造成的产品报废。因此,对热处理件结构形状有一定的设计要求。1)结构形状设计应避免应力集中截面急剧变化的工件,淬火时易引起过量变形或开裂,一般应采用平滑过渡或圆弧过渡;外形
3、的尖锐棱边,尖角和凹腔角处会产生应力集中,因此,也常用圆弧代替尖角,为防止工件上的孔或模具型腔成为裂纹的策源地,孔与孔之间应有一定的距离,冲模型腔与模边之间的距离也应足够大。2)结构形状设计应尽量简单、均衡、规则、对称结构件的形状应尽量使工件各部位的质量均匀分布,以减少淬火时可能引起的过量变形和开裂。理想的结构形状可遵循以下的基本原则:a.球形优于立方体,更优于长方体;b.圆柱体优于圆锥体;c.圆形截面优于椭圆形截面,方形截面优于矩形截面;d.在可能的条件下,应尽量使功能孔的尺寸与位置均衡、对称、分布,也可以通过加开工艺孔或工艺槽来解决质量均衡问题;e.辅助孔应位于交叉刃口的延长线上,尤其不能
4、靠近小锐角,以免成为裂纹的策源地。3)设计中实际措施机械构件中工作的轮廓、形状和尺寸是各式各样的,往往不能遵循上述设计原则,对此可根据实际情况采取措施加以补救。a.设计成合理形状,淬火后再磨去不必要的部分;b.开切必要的孔槽使质量均衡;c.一个不平衡的工件,为了平衡质量、改善散热条件,可加开工艺孔;d.大型复杂工件可采用拼镶结构,以解决加工和热处理的困难;e.刻字、印痕的位置应远离应力集中程度高的孔。为减少损失,避免事故,充分估计各种因素的影响,可采用设计、热加工和热处理几方面共同商讨,协同设计,避免因设计不当造成加工、热处理和使用上的题。图1.1铳刀零件图1. 3热处理工艺设计1.1.1 工
5、艺分析的基本原则热处理工艺设计是热处理车间设计的中心环节,是设备选择的主要依据。所确定的热处理工艺必须先进、可靠、经济合理,并与车间生产规模相适应。常规工艺应力求工艺路线简化,运输量最小,工序较小,节省能源及劳动量。采用先进工艺应经过技术经济论证或实验研究,取得可信的试用效果。1.1.2 工艺路线产品零件从毛坯生产到完成成品,生产路线是确定热处理车间任务的基础,具体如下:(1)铸铁,铸钢,有色金属一般铸件的预备热处理与铸造之后进行,包括正火、扩散退火、等温退火、球化退火、可锻化退火、再结晶退火、消除应力退火、人工时效(稳化处理)等。(2)硬度要求在285HB(30HRC)以下的一般铸件,可在机
6、械加工前热处理到要求硬度,包括正火、调质(淬火及高温回火)。加工余量大的锻件,为保证其热处理效果,应在粗加工后进行热处理。(3)表面硬化,化学热处理零件,硬度要求大于285HB(30HRC)的零件,应在机械加工后进行。一些精度要求高的零件,可使用特殊加工刀具的零件,也可在加工前进行热处理。(4)局部化学热处理零件,生产批量大时,非处理部分应镀层保护,批量小时可采用机械保护,防渗涂层以及车去渗层等方法。(5)绕制弹簧、冷锁、冷挤成形零件、应进行去应力退火、再结晶退火、正火等工序。(6)形变热处理可简化工艺路线,减少工序,节约能源。有些铸、锻件,特别是锻件,可充分利用锻造余热进行淬火、调质等处理,
7、使锻造加工与热处理结合起来。1.1.3 工艺方法的选定(1)常规热处理工艺热处理零件的常规热处理工艺,包括毛坯的预备热处理和零件的最终热处理,如退火、正火、去应力退火、调质(淬火及高温回火)、时效及固溶处理等。从提高热处理质量考虑,如不许在加热过程中发生氧化、脱碳,应采用保护气氛下加热。(2)化学热处理化学热处理包括奥氏体状态下渗碳、碳氮共渗,铁素体状态下的渗氮和氮碳共渗,以及渗硼、渗硅、渗铝及各种渗金属和多元共渗工艺。化学热处理可以在气态、固态或液态介质中完成,确定化学热处理的工艺选用。有化学热处理后需要淬火的,应根据可能尽量采取渗后直接淬火工艺。(3)调质热处理调质热处理技术的发展主要有以
8、下几个方面。炉型。由于振底炉长期使用中存在振底板变形零件在炉内布料、加热不均淬火质量散差大同时振动噪声大、环境差,振底炉已逐渐退出生产线,网带炉、铸链炉得到普遍应用。碳势控制技术的应用。碳势控制技术在保护气氛调质生产线得到普遍应用。有效的控制炉内碳势控制精度,保证了零件淬火后的表面质量。计算机技术的应用。通过应用计算机能够按照工艺设定自动完成工件的生产全过程记录、保存工件生产中的各种工艺参数具有完善的故障诊断、安全警示及连锁功能。快速淬火油和水基淬火介质的应用。快速淬火油的应用保证了高强度螺栓件的热处理内在质量。水基淬火介质的应用解决了零件淬油不硬、淬水开裂及零件淬火变形的质量问题。(4)感应
9、加热淬火感应加热可使用高频、中频、工频、超音频,以及双频及脉冲加热工艺,根据零件钢种、尺寸特点、要求硬化层深度、零件批量等确定工艺。感应加热淬火后可根据可能采用自然回火。(5)火焰表面淬火火焰表面淬火技术的发展,如采用先进温度检测技术与自动化控制与操作,淬火质量可保证。在单件小批量生产中部分采用火焰淬火工艺,生产灵活实用。(6)高密度能量表面处理高密度能量表面处理包括激光表面处理,电子束表面处理和物理及化学气相沉积。一般适用某些特定的零件,选用这种工艺必须先进行工艺实验,试生产使用,用从热处理质量和经济效益考虑。2立铳刀材料设计2.1 工件服役条件和失效形式分析2.1.1 立铳刀的服役条件由于
10、立铳刀是一种用来对金属材料进行铳孔的刀具其结构如上图油刃部和柄部组成,铳刀工作时刃部深入金属内部进行铳削,被金属包围散热困难,升温快,尤其是切削速度很高刃部温度很快达到600C左右。因此要求刃部要有高的硬度、耐磨性和红硬性要高。由于铳刀在很大的轴向压力下钻削,受大的压应力和扭转应力。因此要求具有一定的韧性和高的强度,由于刃部不断磨损,为了使铳刀能长久的使用,要求刃部应淬透。对于柄部来说,它不承担切削工作过程中挤压扭转。要求具有一定的韧度、强度和一定的硬度来保证铳刀良好的铳削要求立铳刀应有良好的几何形状。立铳刀的切削受力分析:在切削金属材料时,立铳刀要受到阻止刀具切除切屑的阻力(即铳削力)。在不
11、同的加工条件下,铳削力的变化范围较大。分析认为,铳刀切削时,工件材料将发生部分弹性变形和塑性变形,并对刀具产生抗力;同时,刀具与切屑、刀具与工件之间要产生摩擦力,铳削力就是二者的合力。图2. 12. 1.2主要失效形式1刀具的磨粒磨损:磨粒磨损是因为工件材料磨擦划过刀具的主后刀面而造成的。2月牙洼磨损:月牙洼磨损是由钢制工件与铳刀之间的化学作用(即刀具前刀面渗出的碳溶入切屑中)引起的。不过,月牙洼磨损也有可能是由高速切削铸铁时切屑划过刀具前刀面的磨蚀作用所引起。3沟槽磨损:刀具产生沟槽磨损的原因通常是在全切深情况下被加工工件表面某处的切削条件与其余部分相比发生恶化造成的。导致工件表面切削条件出
12、现差异的原因可能与工件表面剥落有关;也可能由冷作应力或加工硬化所引起;还有可能与某些似乎无关紧要的因素一一例如油漆一一有关,工件表面的油漆有可能对切入工件不太深的切削刃起到一种淬火作用。4变形:刀具的变形是指刀片在切削热和切削压力的作用下发生软化和扭曲变形。5崩刃和碎裂:因为切削刃的脆性过大,难以承受切削冲击而发生碎片崩裂。6热裂纹与冷却液有关当倾注到切削刃上的冷却液不均匀时,切削刃的温度就会发生波动,引起刀片膨胀和收缩,从而导致切削刃出现裂纹。磨损热裂纹变形崩刃2.2材料设计方案及优化比较2.2.1铳刀材料的基本要求及设计方案1)高硬度和耐磨性:在常温下,切削部分材料必须具备足够的硬度才能切
13、入工件;具有高的耐磨性,刀具才不磨损,延长使用寿命。2)好的耐热性:刀具在切削过程中会产生大量的热量,尤其是在切削速度较高时,温度会很高,因此,刀具材料应具备好的耐热性,既在高温下仍能保持较高的硬度,有能继续进行切削的性能,这种具有高温硬度的性质,又称为热硬性或红硬性。3)高的强度和好的韧性:在切削过程中,刀具要承受很大的冲击力,所以刀具材料要具有较高的强度,否则易断裂和损坏。由于铳刀会受到冲击和振动,因此,铳刀材料还应具备好的韧性,才不易崩刃,碎裂等特点,故设计以下方案。方案一W18Cr4VW18Cr4V为鸨系高速钢,具有高的硬度、红硬性及高温硬度。其热处理范围较宽淬火不易过热,热处理过程不
14、易氧化脱碳,磨削加工性能较好。该钢在5000C及600时硬度分别保持在HRC5758及HRC5253,对于大量的、一般的被加工材料具有良好的切削性能。加工流程:铸型一锻造一球化淬火一退火一回火一成品用途:形状复杂的小型刀具成分含量:含碳量0.70.8%,含鸨量17.519%,含辂量3.804.4%,含帆量LO一1.4%,含硅量小于0.4%,含镒量小于0.4%,含铜量小于0.3%。成分特点:在钢中,碳主要与格、鸨、铝和钮(碳化物的形成元素)等形成碳化物,以提高硬度、耐磨性及红硬性。铝是提高红硬性的主要元素,它在钢中形成碳化物。加热时,一部分碳化物溶入奥氏体,淬火后形成含有大量鸨及其他合金元素、有
15、很高回火稳定性的马氏体。在回火时,一部分鸨以碳化物的形式弥散析出,造成二次硬化。在加热时,未溶的碳化物则起到阻止奥氏体晶粒长大的作用.帆能显著地提高高速钢的红硬性、硬度及耐磨性。锐形成的碳化物在加热时,部分溶入奥氏体,回火时以细小的质点弥散析出,造成二次硬化而提高钢的红硬性。铭在高速钢中主要是增加其淬透性,同时还能提高钢的抗氧化脱碳和抗腐蚀能力。钻也能显著提高钢的红硬性及硬度。锻造工艺:高速钢加热时很容易发生过烧,接近此温度范围的锻造很容易出现碎裂,应严格控制其加热温度。(1)锻造温度范围锻造温度范围W18Cr4V属于高合金钢,其特点是升温速度慢,锻造温度范围窄。始锻温度为IIo(TlI50C
16、,终锻温度为900950C0(2)加热时间的确定W18Cr4V钢的导热性差,一般需分段加热。低温段加热温度为800900。C,加热时间一般按InIin/mm计算。高温时快速加热,加热时间一般按0.5min/mm计算。加热时,为了防止过热或过烧,要严格控制上限温度。同时,炉内的坯料要装炉适量,还要不停地翻转,以使其内外温度均匀。热处理工艺:热处理工艺为前处理是退火,温度为870880度,保温23小时,然后800840度预热,从12701280度分级淬火,分级温度为580620,然后再560度进行三次回火,回火时保温1小时。方案二硬质合金钢硬质合金:是金属碳化物、碳化鸨、碳化钛和以钻为主的金属粘结
17、剂经粉未冶金工艺制造而成的。其主要特点如下:能耐高温,在8001000OC左右仍能保持良好的切削性能,切削时可选用比高速钢高4一8倍的切削速度。常温硬度高,耐磨性好。抗弯强度低,冲击韧性差,刀刃不易磨的很锋利。加工流程:制粉一混合料制备一成型一烧结一深度加工一成品其加工工艺为以下步骤:原辅材料:主料采用国内外优质的碳化鸨(WC)、钻粉(C0)、复式碳化物(CK);辅料为:石蜡或SD增塑剂、酒精湿磨介质。混合料制备:采用先进的可倾式球磨机、间隙式制粒机及其工艺技术、检测技术和质量标准,已获得流动性和压制性能好的混合料。同时采用行业内先进的石蜡工艺,从合金组织上满足切削刀具的高性能。在合金棒料生产
18、方面,如需满足高能球磨的工艺要求,可选择搅拌球磨机及其生产工艺。成型:对于可转位刀片的成型,国产仿DORST自动压机及其制造技术为高精度刀具提供质量好、精度高的合金毛坯。对于小规格的棒料合金制品,单柱校正式油压机及其技术工艺可以满足其市场要求。成型模具可采用委外加工方式解决。烧结:采用目前行业先进的脱蜡-烧结一体炉及其工艺技术可以生产出具有良好的组织和性能的硬质合金制品;采用最先进的低压脱蜡-烧结一体炉及其工艺技术可以明显改善合金的综合性能,提供高质量、高性能的合金刀具。深度加工(合金刀片):采用工具磨、CNC数控周边磨及其工艺技术,生产各种精度等级的可转位刀片,尤其是数控刀片。合金制品标识:
19、毛坯合金制品采用专用刻蚀液标识;精磨涂层制品采用激光打标。方案三陶瓷刀具陶瓷刀使用精密陶瓷高压研制而成,故称陶瓷刀。陶瓷刀具与硬质合金刀具相比,其硬度高,耐磨性好,在相同切削条件加工钢料时,磨损仅为硬质合金刀具的1/15,刀具寿命长;在120(TC时仍能保持80HRA的高硬度,所以在高温下仍能进行高速切削;它与钢铁金属的亲和力小,摩擦因数低,抗粘结和抗扩散能力强,切削时不易粘刀及产生积屑瘤,加工表面质量好。陶瓷刀大多是用一种纳米材料“氧化错”加工而成。用氧化钻粉末在2000度高温下用300吨的重压配上模具压制成刀坯,然后用金刚石打磨之后配上刀柄就做成了成品陶瓷刀。因此陶瓷刀具备了高硬度、高密度
20、、耐高温,抗磁化、抗氧化等特点。生产流程:混合配料一压制坯体一坯体排胶-GPS+HIP处理一刀片刃磨一试刀根据性能刀片可分3大类氧化铝基陶瓷刀片:用于高速重切削、铳削等。加工材料包括硬化钢、冷硬铸铁、超合金、其他类似的硬金属。氮化硅基陶瓷刀片:用于高速重切削、铳削铸铁、切削非铁金属晶须陶瓷刀片:用于加工银基合金、高硬度铸铁和淬硬钢等材料其生产工序如下:混合配料:球磨一振磨一球磨-加胶一球磨;压制坯体:陶瓷刀片的干粉压制工序对粉体形貌、粉体表面电荷状况以及混合粉体的造粒要求都很高,故压制工艺难度较大;坯体排胶:陶瓷刀片的脱胶工艺与硬质合金刀具生产工艺相似;GPS+HIP处理:烧结工艺采用气氛保护
21、烧结(GPS)+热等静压(HlP)处理技术;刀片刃磨:陶瓷刀片的刃磨质量对刀具使用性能影响很大;试刀:对于不同批次、不同时间生产的陶瓷刀片,除监控其性能指标外,在出厂前还应进行试刀,以检验刀片的切削性能。试刀一般在工厂的机床上完成。2.2.2优化比较比较以上三种方案,高速钢韧性好,抗冲击性,刃磨性好,硬度低,红硬性差,通用性强,工艺成熟;硬质合金硬度高,红硬性好,抗冲击性差,韧性差,不便于刃磨成复杂的形状,价钱较贵而且它太硬了,对它本身的加工也成了问题。这导致像麻花钻这样形状比较复杂的工具就比较难用硬质合金制造了;陶瓷刀具的最大弱点是断裂韧性比硬质台金低,脆性比硬质合金大因此要求机床具有足够的
22、刚性,陶瓷刀具的抗氧化能力大大优于硬质合金,但是其工艺要求高,造价昂贵,并且正处于发展阶段,还未普及。根据性能、加工制造、价格、本次设计的要求等方面的比较,优选W18Cr4V做为本次设计的材料。2.3加工工艺流程本次设计根据性能、加工制造、价格、本次设计的要求等方面的比较,我们选用了W18Cr4V,为鸨系高速钢,具有高的硬度、红硬性及高温硬度。其热处理范围较宽淬火不易过热,热处理过程不易氧化脱碳,磨削加工性能较好,通用性强,工艺成熟,其加工工艺流程为:钢材的入厂检查下料锻造焊接与退火机械加工成型一一热处理一刃磨2. 3.1立铳刀的焊接与退火在最终热处理之前要进行预先辅助热处理时柄部与刃部的焊接
23、与退火。刃部和柄部的焊接在对焊机上进行焊接后,焊缝与热影响区的热应力很大,组织也不均匀,性能较差,为了消除应力,改善组织性能,焊接后进行退火,把棒料投入已升温至70(80(TC的退火炉中,待炉料集中后,在加热至退火温度85(870C,经保温后冷至72074(C进行等温转变。以获得等温转变组织。图2.2W18Gr4V钢在电炉中的退火工艺曲线如下图退火后的硬度标准为:HB20725502.4热处理工艺材料在经过机械加工成型后,要进行最终热处理,以达到工件所需要的机械性能要求,立铳刀的热处理器路线是:刃部柄部淬火清洗中间检查回火清洗一一检验喷砂、交检。2. 4.1预热处理淬火预热由于高速钢的导热性很
24、差,而淬火温度却很高,为减少加热时产生的内应力,同时也为避免因冷却工件放入热炉时影响炉温,因此要进行两次预热处理。A第一次预热温度为500600oC、B第二次预热(中温预热)温度为800850,这次预热保温时间不应该太长,以防止碳化物的稳定。高温加热淬火,当温度达到840C后应立即将铳刀柄部放入水中冷却,然后马上拿出放在高温炉中对刃部进行加热,加热时为避免热量上传影响刀柄部的性能应使盐浴面低于焊缝IOmmo为防止刃具在加热时的变形在盐浴炉中加热时,应采用铁丝吊挂垂直的加热。3. 4.2淬火处理高速钢的淬火主要是通过加热是尽可能多的碳及合金元素溶入奥氏体中冷却后得到合金度很高的马氏体组织从而获得
25、高的红硬性和耐磨性打下基础。淬火温度的选择,为了使高速钢获得高的硬度和红硬性,较好的韧性应将淬火加热温度取在碳化物最大限度的溶入奥氏体而同时又不致使晶粒过分长大的温度区内。淬火加热时间高温加热时间的选择应保证刃具热透并使合金碳化物充分溶解,又不引起晶粒粗大为原则。淬火冷却,高速钢冷却时的组织转变,冷却时的组织转变取决于高温加热时所造成的奥氏体的合金度又取决于随后的冷却条件。图2.3W18Gr4V钢在1280C奥氏体化后的奥氏体等温转变曲线PJ从奥氏体的等温转变曲线看高速钢的奥氏体稳定性很大,因此采用分级淬火和等温淬火。A第一次分级淬火即加热后的工件在58(620C的低温中性盐浴炉中进行保温一段
26、时间(保温时间与加热时间相同)。B第二次分级淬火即从58(620C盐浴炉中后再与35(400C硝盐炉中保温一段时间约20分钟左右分级淬火的优点是可以防止二次碳化物的析出,并减少矫直机锥柄立铳刀的变形和开裂。C等温淬火,为了进一步减少变形并提高韧性因此要进行等温淬火,常采用的等温温度为20(280C加热时间为1.52h淬火后约获得50%的贝氏体和大量的残余奥氏体因此淬火后的硬度比普通淬火稍低淬火变形开裂倾向很低。2 .4.3回火处理W18Gr4V钢的淬火后组织处于不稳定状态,内应力大,残余奥氏体多,硬度及红硬性降低。若不及时回火容易崩刃折断等现象。为了为消除内应力,稳定组织减少残余奥氏体量,提高
27、硬度,刃磨性和红硬性需要淬火后及时回火。图2.4W18Gr4V钢性能及残余奥氏体量的粹火源度t/。C(1)第一次回火由于回火后残余奥氏体量多第一次回火仅有15%左右的残余奥氏体量发生转变为马氏体。同时新生成的马氏体有必然有新的内应力。所以要进行第二次回火。(2)第二次回火残余奥氏体量转变更少,由于同样原因,所以要进行第三次回火。(3)第三次回火这次回火之后性能达到了刃具的要求回火后的组织为回火马氏。其回火工艺图如下图2.5。表2.1为W18Gr4V钢立铳刀回火工艺3 .热处理车间设计3.1 生产纲领计算公式Q=q(l+)%Q一车间生产纲领(件/年或t/年)q一车间每年的热处理计划件数量,包括备
28、件(件/年或t/年)8车间废品损失率3.2 工作制度和年时基数根据车间生产性质和任务,一般单件小批量生产性质的综合热处理车间,应采用两班工作制。其中个别工艺周期较长应连续生产的设备或大型设备应考虑三班工作制;安装在生产流水线上的热处理设备,应与生产线生产班制相一致。本次采用三班制。详细见表3.1。1)设备年时基数为设备在全年内的总工时数,等于在全年日内应工作的的时数减去各种时间损失,EP:%=。设N”(1-6)(公式2)F设=251*3*8*(1-9%)=5482h(查知一般设备时间损失率为9%)2)工人年时基数以=。人(1-6%)(公式2.2)F人=251*8*(1-8%)=1847h(查询
29、知一般工人时间损失率为8%)选择重要设备,年时基数为4718h表3.1热处理车间设备和工人年时基数项目生产性质工作班制全年工作日每班工作时数全年时间损失(%)年时基数一、设备一般设备连续工作制3355897722重要设备阶段工作制32518164718小型简易热处理炉阶段工作制3251875571大型复杂热处理炉连续工作制33558147326二、工人一般工作条件251881830较差工作条件25181217483.3热处理设备的选择年产量4万件,分4个批次生产,即每批1万件,立铳刀尺寸:45612*28*75(1)退火设备:选用TFRX-3-30-9,炉膛尺寸(mm):950X450X350
30、,一次可生产4500件装炉量:3个(2)预热处理设备:第一次预热温度为500600C低温预热设备为RDM-45-6型低温盐炉,炉膛尺寸(mm):450X350X700,一次可生产3500件装炉量:3个第二次预热(中温预热)温度为800850oC预热时间按0.4飞.6分min计算,故取20min盐炉,采用工作温度950的中温盐浴炉设备DM-75-8,炉膛尺寸(mm):450350X650,一次可生产3000件装炉量:4个(3)淬火设备:淬火加热锥柄立铳刀用高温盐浴炉其规格如及性能下表RYD埋入型电极盐浴炉型号数量功率炉膛尺寸使用温度用途RYD-100-911100300X350X6001300C
31、UIJUo淬火加热一次可生产2000件装炉量:5个(4)回火设备:回火设备的选用就炉温的均匀性和加热速度来内热式电极盐浴炉最好,可选用RJ-35-6型的炉子回火,炉膛尺寸6500X650mm,一次可生产2000件装炉量:5个电阻炉埋入型电极盐浴炉内热式盐浴炉4.热处理车间布置4.1 热处理车间分类1. 1.1按工作性质分类毛坯半成品(或称第一)热处理车间,承担锻件、锻件毛坯热处理任务,主要实施退火、正火、调质等预先热处理工艺。这类车间常设在锻造、铸造车间内。成品(或称第二)热处理车间,主要承担产品的最终阶段的热处理任务,主要实施淬火回火、渗碳、感应加热淬火等热处理,以达到产品最终技术要求。这类
32、车间常独立设置,常与机加工车间相邻或设在机加工车间内。4. 1.2按生产环境分类独立的热处理车间附设在有关车间内部的热处理工部,这类工部与其所在车间生产有着密切联系,例如锻件热处理工部,可以减少工件运输,便于利用锻后余热进行热处理。产品生产线中的热处理工段。5. 1.3按生产性质分类大批量生产全自动化热处理车间。这类车间产品单一,工艺定型,选用专用性连续式热处理设备,组成全自动的机械化生产线。批量生产半自动热处理车间。这类车间多选用柔性生产线或局部机械化自动生产。单件生产手工操作热处理车间。这类车间多选用间隙式手工操作的热处理设备。4.2车间设备组织与设置车间设备平面布置工作包括设计工作场地和
33、布置设备。其基本内容是,根据热处理生产任务确定生产组织方式;确定热处理生产归属的车间或独立车间;确定车间厂房位置、形式和尺寸;决定无聊运输线路和方式,组织合理的生产流程;划分车间各工序、工段及各工作场地,确定设备的工艺布置和相对位置及间隔距离,并留出工人操作及辅助面积,确定工人操作位置;最后画出车间设备平面和立面布置图,并编制设备明细表。4.2.1车间设备平面布置的原则大型连续式设备及机组的布置,根据数量确定是否跨厂房跨度,尽量在同一跨度中,有利于使用起重设备。车间有一端封闭墙体时,大型设备尽量靠在内墙布置,以利用采光和通风。热处理车间在工艺流程基本顺畅的情况下,可按设备分片布置。设备布置应符
34、合工艺流程的需要,零件的流向应尽量由入料端向出料端,避免交叉和往返运输。设备应尽量布置整齐,箱式炉以炉口取齐,井式炉以中心线取齐。需要起重运输工具的设备,应布置于起重机有效范围内。需局部通风的设备应靠外墙或靠近柱子布置,以利于通风管的引出。车间内应避免隔断,对必须设置隔离间的应集中于车间的一端。喷砂间靠外墙隔断,有利于砂的储存和设置除尘装置。生产区内应留有零件装卸及存储面积或立体仓库。车间需留出必要的通道,通道的尺寸随车间使用运输车型而异。车间预留扩建面积可采取车间内预留设备空地或预留增跨或接长厂房空地。留有计算机控制管理房地。热处理车间的设计原则为:(1)热处理车间的位置和热处理生产的组织要
35、保证全厂生产流程合理,各种物料的运行路线短捷,流动工作量小。(2)充分考虑热处理车间的特殊情况,改善操作环境和生产安全。(3)设备布置应与电力、气、燃料、水等供应路线相协调。(4)合理利用车间面积。(5)有利于设备的安装和投产后设备的维修。(6)有利于车间生产管理提高管理水平。(7)注意车间的条理和美观,提高生产的文明程度。(8)考虑远景的发展规划。4.2.2热处理车间内设备的组织原则(1)工艺原则:把相同的工艺设备组合和布置在一个工地上,如淬火加热炉为一类,渗碳炉为一类。这种组织方式便于工件按一定的工艺顺序形成生产流程,适合于多工艺小批量生产方式。(2)设备原则:把同类型的设备组织和布置在一
36、个工地上,例如把井式炉组合在一起。这种方式便于设备管理。通常一个车间内混合有工艺原则和设备原则的组织方式。(3)对象原则:以生产对象为线索,把完成该产品生产的热处理设备按工艺顺序组成生产线。这种方式适合于大批量生产。4.3设备平面布置设计4.3.1设备平面布置的一般原则(1)大型连续式设备及机组的布置,根据数量确定是否跨厂房跨度,一般应尽量布置在一跨度中,有利于是有起重运输设备。(2)车间有一面封闭墙体时,大型设备应尽量靠墙内布置,可利采光和通风。(3)中小型热处理车间在工艺流程基本顺畅的情况下,可按设备类型分片布置。(4)设备布置应符合工艺流程的需要,零件的流向应尽可能由入料端流向出料端,避
37、免交叉和往返运输。(5)设备应尽量布置整齐,箱式炉以炉口取齐,井式炉以中心线取齐。(6)需要起重运输的设备,应布置于起重机的有效范围内。(7)需局部通风的设备应靠外墙或靠近柱子布置,以利于通风管的引出。(8)车间内应尽量避免隔断,对必须设置隔间的应集中布置于车间的一端。喷砂间靠外墙隔断,有利于砂的储存和设置除尘装置。(9)生产区内应留有零件装卸及储存面积或立体仓库。(10)车间应留出必要的通道,通道的尺寸随车间使用运输车型而异。(三)车间顶留扩建面积可采取车间内顶留设备空地或顶留增跨或姐厂房空地。4. 3.2设备布置间距(1)炉子后端距墙柱的距离,一般箱式炉取1到2米;煤气炉和油炉取1.5到L
38、8米;可控气氛炉应留出辐射管取出的距离。(2)炉子之间的距离,小型炉0.8到1.2米;中型炉1.2到1.5米;大型炉L5到2.0米;间隙式炉组成的生产线0.5到0.8米;连续式炉3.0到4.0米。(3)井式炉间的距离,小型炉炉0.8到L2米;中型炉1.2到L5米;大型炉2.5到4米。(4)井式炉炉口距地面距离,渗碳炉0.3米;正火、回火炉0.7到0.9米。(5)连续式炉的炉前后区空地,锻件热处理炉:炉前6至I8米,炉后8到12米;连续气体渗碳炉:炉前4到6米,炉后2到3米;一般连续式炉前后4到6米。(6)炉子安装高度即炉口炉平面到地平的距离,人工操作时,一般为0.85到0.8米。4.4车间在厂
39、区内的位置对热处理车间在总体布置中要求:(1)热处理车间散发大量燃烧废气、保护气氛废气,其他有害气体及油烟、粉尘等,所以应位于其他厂房下风向,且要有卫生防护带。(2)热处理车间靠近各类震源时,应该有一定间距或采取相应的隔震措施,震源如锻锤、空压机、氧气机、铁路等。热处理车间为综合性处理车间,为全厂服务,在工厂总体位置中应选择适中的位置或靠近与其联系多的车间。4.5车间面积及面积指标车间总面积包括工艺设计中用于基本生产设备和辅助设备所占用的面积,包括厂房、披屋、露天起重机下的有效面积。(1)生产面积(见表4.1)生产设备、设备之间通道、工人操作、工件存放地所占用的面积,以及清洗、清理、矫正、取样
40、、运输设备所占用的面积,占总面积50%70%o(2)辅助面积变配电间、变频间、电容期间、检验间、快速实验室、保护气氛制备间、机修间、仪表间、通风机室、各类仓库、主要通道、露天仓库等所占用的面积,占总面积30%50%。表4.1车间面积生产面积指标车间类型规模生产指标(t2年)锻件热处理小型中型大型2-33-4.556综合热处理小型中型0.8-1.21.0-1.5标准件热处理3.04.0齿轮热处理1.02.0设计总结:在老师的指导下,通过二周多的热处理生产线车间设计,对热处理车间设计的一般步骤有了初步的了解。实践动手能力有了一定的提高。此外还进一步使自己巩固了AutoCAD的知识。同时也认识到设计
41、不仅仅是产品能不能使用的问题,而且还涉及到它的成本,在实际应用中,产品的成本要是太高,即使设计的再好也不可能得到实际应用。我们原先设计的产品质量很好但是工艺复杂,成本太高,利润太低,不符合市场规律。经过王松林老师的指点,我们修改工艺降低成本提高了产量。使这一设计更符合实际情况。为促进我国热处理技术的发展,我们在热处理车间设计中,应全面了解热处理技术的现状和水平,掌握其发展趋势,从改革产品设计和生产工艺,合理利用设备、提高设备利用率;正确分配和组织人力,提高生产率;合理利用工艺材料,提高材料的代用;节约能源;提高产品的质量、减少或灭绝废次品等方面设计热处理车间,大力发展先进的热处理新技术、新工艺、新材料、新设备,用高新技术改造传统的热处理技术,实现“优质、高效、节能、降耗、无污染、低成本、专业化生产。力争到达到工业发达国家的先进水平。在我们设计的过程中,王松林老师尽管自己工作繁重,但还是抽空多次给我们答疑,及时解决我们在设计中遇到的困难,让我们能顺利继续下去,可以说在整个设计过程中,两位老师在很大程度上帮助了我们。参考文献:金属材料学/戴起勋主编一2版一北京:化学化工出版社,2012.12铳削刀具技术及应用实例/倪为国,潘延华编一北京:化学工业出版社,2006.8热处理工工艺学夏立芳编一5版一哈尔滨:哈尔滨工艺大学出版社,2012.热处理炉及车间设备热处理手册1/2/3分册
链接地址:https://www.desk33.com/p-787555.html