自控实验三线性定常系统的稳态误差.doc
《自控实验三线性定常系统的稳态误差.doc》由会员分享,可在线阅读,更多相关《自控实验三线性定常系统的稳态误差.doc(15页珍藏版)》请在课桌文档上搜索。
1、word实验三 线性定常系统的稳态误差一、实验目的1. 通过本实验,理解系统的跟踪误差与其结构、参数与输入信号的形式、幅值大小之间的关系;2. 研究系统的开环增益K对稳态误差的影响。二、实验设备同实验一。三、实验容1. 观测0型二阶系统的单位阶跃响应和单位斜坡响应,并实测它们的稳态误差;2. 观测I型二阶系统的单位阶跃响应和单位斜坡响应,并实测它们的稳态误差;3. 观测II型二阶系统的单位斜坡响应和单位抛物坡,并实测它们的稳态误差。四、实验原理通常控制系统的方框图如图4-1所示。其中G(S)为系统前向通道的传递函数,H(S)为其反馈通道的传递函数。图4-1由图4-1求得(1)由上式可知,系统的
2、误差E(S)不仅与其结构和参数有关,而且也与输入信号R(S)的形式和大小有关。如果系统稳定,且误差的终值存在,则可用下列的终值定理求取系统的稳态误差:(2)本实验就是研究系统的稳态误差与上述因素间的关系。下面叙述0型、I型、II型系统对三种不同输入信号所产生的稳态误差。10型二阶系统设0型二阶系统的方框图如图4-2所示。根据式(2),可以计算出该系统对阶跃和斜坡输入时的稳态误差:图4-2 0型二阶系统的方框图1) 单位阶跃输入()图表 1仿真结果中可以看到,读到的误差值为324.506mV,基本符合理论的推算结果。Matlab仿真2) 单位斜坡输入()上述结果表明0型系统只能跟踪阶跃输入,但有
3、稳态误差存在,其计算公式为:其中,R0为阶跃信号的幅值。由实验观测到的图4-3(a)和图4-3(b)所示的波形可知,系统实际的稳态误差符合理论计算的结果。图4-3(a) 图4-3(b)图表 2从图上可以看出,对于这个系统,当输入是单位斜坡信号时,系统的误差会随着时间的推移而不断的加大,可以想见如果不是系统量程有限,误差一定会趋于无穷大,这与理论结果是一致的。而图上当输入信号超出量程之后,信号不再增大,误差也不再增大,这与输入阶跃信号的结果也是一致的。Matlab仿真2I型二阶系统设图4-4为I型二阶系统的方框图。图4-41) 单位阶跃输入图表 3图上看到,当时,误差的确是趋于0的。Matlab
4、仿真2) 单位斜坡输入这表明I型系统的输出信号完全能跟踪阶跃输入信号,在稳态时其误差为零。对于单位斜坡信号输入,该系统的输出也能跟踪输入信号的变化,且在稳态时两者的速度相等(即),但有位置误差存在,其值为,其中,为斜坡信号对时间的变化率。图表 4图中读到的误差值稳定在95mV左右,与预期的100mV相差不多,认为是正确的。Matlab仿真3) 单位抛物输入图表 5可见,输入单位抛物信号时,I型系统的误差是趋于无穷大的。当输入信号超量程时,系统又变成输入单位阶跃信号时的形态,误差趋于零。Matlab仿真3II型二阶系统设图4-5为II型二阶系统的方框图。图4-5 II型二阶系统的方框图同理可证明
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 自控 实验 线性 系统 稳态 误差
链接地址:https://www.desk33.com/p-8222.html