头颅MRI入门必修之读片知识.ppt
《头颅MRI入门必修之读片知识.ppt》由会员分享,可在线阅读,更多相关《头颅MRI入门必修之读片知识.ppt(111页珍藏版)》请在课桌文档上搜索。
1、1,头颅MRI读片知识,2,磁共振成像机的基本结构,稳定的静磁场磁体产生磁场变化的梯度磁场梯度系统存在流动的氢质子成像基础发射射频脉冲激发能量的装置射频系统接受物体放出能量的装置表面线圈检测能量并转化为图象计算机系统,3,影响磁共振成像信号强度的因素,组织特异性因素(内因)氢质子密度氢质子运动速度T1弛豫T2弛豫,操作因素(外因)外磁场强度与均匀性射频脉冲序列序列定时参数信号叠加次数,4,MRI与CT比较,1、无骨性伪影,后颅凹显示好,2、可进行冠、矢及斜位扫描,充分显示病变;3、利用血管流动效应,进行血管成像;4、利用血红蛋白变化的规律,了解并判断出血时相;5、成像因素多,对病变的敏感性增加
2、,有利发现微小病变,并在定性诊断中发挥更好的作用。,5,正常轴位图像脑叶定位,了解中央沟的位置;了解大脑外侧裂的位置;额叶占大脑半球的3/5;在大脑半球上层面,额叶占2/3;颞叶位于外侧裂之外,枕叶位于侧脑室后角附近,基底节位于脑室前角和三角区之间。,6,中央沟,大脑外侧裂,7,上层面中央沟位置,中央沟,额叶,顶叶,半卵圆中心,8,脑室层面中央沟位置,中央沟,额叶,顶叶,放射冠,9,基底节区与枕叶范围,尾状核,额叶,颞叶,岛叶,丘脑,枕叶,内囊,豆状核,外囊,10,外侧裂与颞叶位置,大脑外侧裂,颞叶,11,后颅凹与枕叶的关系,小脑,枕叶,12,磁共振成像的读片顺序,1、按时间排列图片;2、按序
3、列排列图片;3、先读平扫再读增强;4、先读T1WI,T2WI,再读其他序列;5、功能图象只是诊断的参考。,13,磁共振图像的基本参数,成像参数1、重复时间TR2、回波时间TE3、反转时间TI4、层面厚度5、层间距6、重建野7、矩阵8、激励次数9、扫描层数10、扫描时间,图像参数1、MRI编号(MRI号)2、系统编号(Ex)3、序列号(Se号)4、图像号(Im号)5、姓名、性别、年龄6、日期、时间7、窗宽、窗位,TR、TE构成T1WI、T2WITR1000 TE 50 T2WITR500 TE 50 T1WITR1000 TE 50 PdWITI 构成反转恢复序列,层厚与间隔构成分辨率,FOV构
4、成图像大小,矩阵构成图像清晰度,NEX构成清晰度和扫描时间,在一定的TR时间内层数与时间无关,影响扫描时间的参数有TR、矩阵、激励次数,14,磁共振图像上的标记的意义,OAx-轴位OSag-矢位OCor-冠位,S-0位线上I-0位线下R-0位线右L-0位线左A-0位线前P-0位线后,15,磁共振图像上的标记的意义,16,常见磁共振成像扫描序列,SE(FSE)-自旋回波(快速自旋回波)T1WIT2WIGRE-梯度回波T2*WIIR-反转回波(包括T2FLAIR和T1FLAIR)弥散加权(DWI)脂肪抑制(T1脂肪抑制、T2脂肪抑制)MT-磁化传递TOF-时空飞跃血管成像,17,其他扫描序列,灌注
5、加权(PWI)弥散张量成像(DTI)质子波谱成像(MRS)三维容积成像脑功能 成像(fMRI),18,19,磁共振成像的基本序列是T1加权成像(T1WI)和T2加权成像(T2WI),任何磁共振检查都必需有T1和T2图像;T1图像了解脑内结构 T2图像发现病变 脑内同一扫描方向上,各个序列扫描的参数是匹配的,即层厚、间隔、位置是相同的,这样才能有效的对比不同序列的信号特点。,20,正常磁共振图像的特征,脑组织结构完整脑组织界面清晰中线及中线旁结构居中脑室系统的形态、大小及位置完好脑沟、脑池的形态、大小无改变各扫描序列中脑内未见异常信号正常血管流空现象存在颅骨结构无破坏与增生脑内无异常强化,21,
6、正常轴位T1WI,22,正常轴位T2WI,23,液体衰减反转恢复序列(Flair),该序列是近年发展起来的扫描序列,分为T1Flair和T2Flair两种,T1Flair主要有显著的灰白质对比度,图像的组织界面清晰。T2Flai是T2WI序列重要的补充,主要是通过编制扫描序列中不同的脉冲方式,达到抑制自由水,突出显示结合水的目的。,24,T2Flai序列能够充分显示脑室旁、脑沟旁病灶。除对脑血管病的诊断具有重要作用,对多发性硬化、脑炎、囊肿与实质性病灶鉴别、肿瘤与水肿的区分以及脑外伤的诊断非常有效。目前该序列已经是常规扫描序列。在T2Flai图像上,正常脑室与脑沟、脑池为低信号。正常情况下脑室
7、旁可以有少许室管膜下渗出为高信号,除此之外一旦发现高信号即为异常。,25,正常轴位T2Flair,26,正常轴位T1Flair,27,弥散加权成像(DWI),弥散加权成像的基本原理是分子的不规则随机运动,单位是mm2/s;MR弥散成像的宏观表现用表观弥散系数ADC表示,正常组织的ADC值在6810-4mm2/S。,28,在正常脑组织中水分子的弥散方向是均匀的,所表现的ADC值是相对稳定的;脑梗死发生时,首先是细胞毒性水肿,细胞内水份增加,水分子的弥散受限制,即ADC值降低,故弥散加权成像上病灶表现为高信号,而ADC图上表现为低信号。在脑梗死后期,细胞破裂和血管源性水肿,水分子的弥散又恢复正常,
8、表现为弥散加权上高信号逐渐减低,ADC值逐渐增高,在1周至10天左右恢复正常,即假正常化。一般DWI 上信号恢复慢于ADC的恢复,当DWI仍是高信号,而ADC未见低信号是,即为亚急性期。弥散加权成像最早用于检出超早期脑梗死,目前还用于对肿瘤、脱髓鞘病、脑炎等的诊断。,29,正常轴位DWI,30,梯度回波(GRE),采用小反转角度,得到T2*WI图像;GRE序列对磁场均匀度的变化敏感;在GRE序列上,出血、钙化等所引起的磁场均匀度变化显示灵敏,表现为低信号。,31,T2WI与GRE,海绵状血管瘤,结节性硬化,32,脑栓塞,丘脑急性出血,33,脂肪抑制,可以分别进行T1、T2脂肪抑制图象;主要去除
9、脂肪组织的干扰或鉴别病变组织是否是脂肪组织;在体部及四肢应用较多;,34,脂肪抑制,35,36,磁化传递(MT),磁化传递序列是T1WI的一种序列形式;主要用于在增强扫描中增加组织的磁化差别,提高细小病灶的发现率;用于脑转移瘤、多发性硬化等细小病变的检出率。,37,普通增强与磁化传递(MT),38,血管成像(MRA)的应用,脑血流在磁共振成像上呈现两种效应流空现象和流入增强效应。在多数情况下,动脉与静脉血管在T2WI上表现流空现象,在T1WI上,动脉血管仍为流空,而静脉血管则有时可表现为流入增强即高信号。MRA即利用上述效应,在极薄的层面上使血管断面产生高信号,通过计算机重建,组成连续的血管影
10、像,这些血管影像可以在360空间自由旋转,用于观察血管的不同侧面。注意:头颅MRA最好与头颅MRI平扫结合应用,单纯应用MRA常常贻误诊断。,39,MRA的优点:无创、快速,可以反复进行,重建的图像可以进行三维动态观察,对脑动脉瘤的瘤颈的观察非常重要。MRA的缺点 MRA反映的是血流图,即只有血液流动,才能出现MRA血管图像,因此,在实际中对血管管腔的评价中易出现假性狭窄或夸大狭窄;MRA只能反映动脉期或静脉期的图像,无法进行动态观察。在血管成像上任何高信号的病灶均可显示,因此可能干扰血管的显示;注射造影剂血管成像的方式可消除血流的干扰,提高小血管的显示能力,,40,血管成像,41,异常磁共振
11、成像的特点,脑内组织结构异常脑组织界面破坏中线结构移位 脑室形态改变 脑内异常信号 正常血管流动消失或出现异常流空颅骨改变 脑内异常强化,42,脑结构异常,脑内组织结构异常脑组织界面破坏中线结构移位 脑室形态改变 脑内异常信号 正常血管流动消失或出现异常流空颅骨改变 脑内异常强化,43,脑组织界面破坏,脑内组织结构异常脑组织界面破坏中线结构移位 脑室形态改变 脑内异常信号 正常血管流动消失或出现异常流空颅骨改变 脑内异常强化,44,中线结构移位,脑内组织结构异常脑组织界面破坏中线结构移位 脑室形态改变 脑内异常信号 正常血管流动消失或出现异常流空颅骨改变 脑内异常强化,45,脑室形态改变,脑积
12、水,脑萎缩,脑室变形,脑内组织结构异常脑组织界面破坏中线结构移位 脑室形态改变 脑内异常信号 正常血管流动消失或出现异常流空颅骨改变 脑内异常强化,脑室移位,46,脑内信号异常,T1WI低信号等信号高信号混杂信号,T2WI低信号等信号高信号混杂信号,脑内组织结构异常脑组织界面破坏中线结构移位 脑室形态改变 脑内异常信号 正常血管流动消失或出现异常流空颅骨改变 脑内异常强化,47,T1WI信号异常,低信号,高信号,等信号,混杂信号,48,T2WI信号异常,高信号,低信号,等信号,混杂信号,49,T1WI信号异常表现,T1WI低信号脑梗死脑软化脑水肿脱髓鞘病大多数肿瘤炎症,T1WI高信号亚急性期出
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 头颅 MRI 入门 必修 知识
链接地址:https://www.desk33.com/p-831860.html