基于维纳滤波的含噪声语音信号的恢复.docx
《基于维纳滤波的含噪声语音信号的恢复.docx》由会员分享,可在线阅读,更多相关《基于维纳滤波的含噪声语音信号的恢复.docx(4页珍藏版)》请在课桌文档上搜索。
1、基于维纳滤波的含噪声语音信号的恢复摘要本文基于随机信号分析与处理的相关理论,采用维纳滤波技术恢复噪声中的鸟鸣声信号,通过仿真到达预期效果,对工程实践有很好的理论支持。关键词:维纳滤波器频域法实验目的1 .熟悉维纳滤波的根本概念2 .熟悉线性最小均方估计的根本原理3 .掌握运用维纳滤波理论恢复信号的根本方法实验原理信号从发送者传送到接受者往往受到集中形式的变形而削弱,维纳滤波是一种从接收的原始信号中恢复信号的方法。由于但时域方法要求协方差矩阵的逆,当数据比拟长的时候,求逆的运算量非常大,我们在这里采用频域法来求解。维纳滤波器作为波形估计的一种方法,可以采用多种估计准那么。假定离散时间的观测过程为
2、其中贝)为噪声,5()为原信号,%为起始观测时刻,为观测结束时刻。在实际中通常采用易于实现的线性最小均方准那么。线性最小均方估计是观测的线性函数,它可以作为观测序列通过离散时间线性系统,即滤波器的系数的选择可以由线性最小均方估计的正交原理来求取,即即上式也称为Wiener-HOPf方程。对于信号和观测过程是平稳随机序列,并且是联合平稳随机序列,系统为因果的线性时不变离散时间线性系统,4)=-8,那么有求解维纳滤波器即求系数力(/?)的过程。将上式两边做Z变换,得Gy(Z)=(z)G(Z)所以,H(Z)称为维纳滤波器。当信号S(八)与观测噪声统计独立时,维纳滤波器为其中,G,(Z)为噪声的功率谱
3、,维纳滤波器用离散傅里叶变换可表示为实验步骤维纳滤波既可以采用频域方法实现,也可以采用时域方法实现,但时域方法要求协方差矩阵的逆,当数据比拟长的时候,求逆的运算量非常大。本实验给定信号为ChirP信号(鸟叫声),数据文件为ChirP.mat(可以从MATLAB中找到),可以用load(chip,Fs,y)调入数据文件。用始于发实现维纳滤波的步骤如下:1)产生信号s()和观测z(),信号为ChirP信号(鸟叫声),观测为信号叠加上高斯白噪声:2)估计&和&$3)计算=R-R;4)计算估计的信号频域法实现维纳滤波的步骤如下:1)产生信号s()和观测z(),信号为ChirP信号(鸟叫声),观测为信号
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 基于 滤波 噪声 语音 信号 恢复
链接地址:https://www.desk33.com/p-845582.html