零极点对系统性能的影响分析-课程设计报告书.doc
《零极点对系统性能的影响分析-课程设计报告书.doc》由会员分享,可在线阅读,更多相关《零极点对系统性能的影响分析-课程设计报告书.doc(44页珍藏版)》请在课桌文档上搜索。
1、 设计任务书学生: 专业班级: 指导教师: 工作单位: 题 目: 零极点对系统性能的影响分析 初始条件:系统开环传递函数为或,其中G1s是在阻尼系数的归一化二阶系统的传递函数上增加了一个零点得到的,G2s是在阻尼系数的归一化二阶系统的传递函数上增加了一个极点得到的。要求完成的主要任务: 包括课程设计工作量与其技术要求,以与说明书撰写等具体要求(1) 当开环传递函数为G1s时,绘制系统的根轨迹和奈奎斯特曲线;(2) 当开环传递函数为G1s时,a分别取0.01,1,100时,用Matlab计算系统阶跃响应的超调量和系统频率响应的谐振峰值,并分析两者的关系;(3) 画出(2)中各a值的波特图;(4)
2、 当开环传递函数为G2s时,绘制系统的根轨迹和奈奎斯特曲线;(5) 当开环传递函数为G2s时,p分别取0.01,1,100时,绘制不同p值时的波特图;(6) 比照增加极点后系统带宽和原二阶系统的带宽,分析增加极点对系统带宽的影响;(7) 用Matlab画出上述每种情况的在单位反响时对单位阶跃输入的响应;(8) 对上述任务写出完整的课程设计说明书,说明书中必须写清楚分析计算的过程,并包含Matlab源程序或Simulink仿真模型,说明书的格式按照教务处标准书写。时间安排: 任务时间天指导教师下达任务书,审题、查阅相关资料2分析、计算2编写程序1撰写报告2论文辩论1指导教师签名: 年 月 日系主
3、任或责任教师签名: 年 月 日41 / 44目录1综述12增加零极点对系统稳定性的影响12.1增加零点对系统稳定性的影响2开环传递函数G1s的根轨迹曲线2开环传递函数G1s的奈奎斯特曲线32.2增加极点对系统稳定性的影响3开环传递函数G2s的根轨迹曲线3开环传递函数G2s的奈奎斯特曲线53增加零极点对系统暂态性能的影响73.1增加零点对系统暂态性能的影响7零点a=0.01时的阶跃响应和伯德图7零点a= 1时的阶跃响应和伯德图9零点a= 100时的阶跃响应和伯德图10原系统的阶跃响应和伯德图12综合分析133.2增加极点对系统暂态性能的影响14极点p=0.01时的阶跃响应和伯德图14极点p=1时
4、的阶跃响应和伯德图15极点p=100时的阶跃响应和伯德图17综合分析184增加零极点对系统稳态性能的影响194.1增加的零极点在s的左半平面194.2增加的零极点在s的虚轴上235设计心得体会266参考文献27附录1:课程设计中所用到的程序28附录2:本科生课程设计成绩评定表40零极点对系统性能的影响分析1综述在自动控制系统中,对系统各项性能如稳定性,动态性能和稳态性能等有一定的要求,稳定性是控制系统的本质,指的是控制系统偏离平衡状态后自动恢复到平衡状态的能力。系统动态性能是在零初始条件下通过阶跃响应来定义的,对于稳定的系统,动态性能一般指系统的超调量、超调时间、上升时间、调整时间,描述的是系
5、统的最大偏差以与反响的快速性;稳态性能指的是系统的稳态误差,描述的是系统的控制精度。在本文中,采用增加零极点并变化其值的思路,从时域和频域两个方面来研究高阶系统的各项性能指标,并借助工程软件matlab通过编程来绘制系统的根轨迹曲线、奈奎斯特曲线,阶跃响应曲线以与波特图曲线,研究系统的零极点对系统性能的影响。2增加零极点对系统稳定性的影响线性定常系统稳定的充分必要条件:闭环系统特征方程的所有根都具有负实部,或者说闭环传递函数的所有极点均位于为S平面的左半局部不包括虚轴。由于此处讨论的是开环零极点对系统稳定性的影响,而闭环传递函数的特征方程不易求出,在时域中直接分析较为困难。相比之下,以开环零极
6、点作为研究对象的根轨迹法和频域法那么更显优势。基于这层考虑,本节主要通过根轨迹法和频域法分析增加零极点对系统稳定性的影响。设系统开环传递函数分别为和,其中G1s和G2s分别是在阻尼系数的归一化二阶系统的传递函数上增加了一个零点或极点的结果。下面将首先通过根轨迹法对和的稳定性进展分析,接着在频域过奈奎斯特曲线对得出的结论作进一步验证。2.1增加零点对系统稳定性的影响开环传递函数G1s的根轨迹曲线系统开环传递函数的根轨迹为广义根轨迹,系统闭环特征方程为: 。将上式变换可得 其中 。设,所以,绘制开环传递函数的根轨迹,实际上就是原系统的根轨迹。在MATLAB中建立M文件M2_1.m(程序容见附录1)
7、,运行后的结果如图1所示。图1 的根轨迹图从根轨迹图上可以看出,随着k1值的改变,系统的闭环极点始终在S平面的左半局部,即增加零点并不改变原系统的稳定性。1s的奈奎斯特曲线当a分别取1,2,3,10时,分别画出其对应的奈奎斯特曲线。在matlab中建立M文件M2_2.m(程序容见附录1)。运行结果如图2所示。图2 G1s的奈奎斯特曲线由运行结果可以发现,当a取1,2,3,10不同的值时,其对应的奈奎斯特曲线均不包含点-1j,0,根据奈奎斯特稳定判据知,此时的系统稳定。实际上当a取其它的值时,其对应的奈奎斯特曲线也不可能包围点-1j,0,此处证明从略。2.2增加极点对系统稳定性的影响开环传递函数
8、G2s的根轨迹曲线系统开环传递函数的根轨迹为广义根轨迹,系统闭环特征方程为: 。将上式变换可得 其中 。设,所以,绘制开环传递函数的根轨迹,实际上就是原系统的根轨迹。在MATLAB中建立M文件M2_3.m(程序容见附录1),运行后的结果如图3所示。图3 G2s的根轨迹曲线从根轨迹上可以发现,当k2在0到间变化时,系统的闭环极点始终在S平面的左半局部,增加极点对该系统的稳定性无影响。但考虑到曲线有向右拉的的趋势,此时还不能断定增加极点对所有的闭环系统无影响。当原系统的不再是0.5时,增加极点后系统的传递函数为变换后可得 其中 。下面分别画出阻尼系数,0.3,1,1.5,2时增加极点的根轨迹图。在
9、matlab中建立M文件M2_4.m(程序容见附录1),运行后的结果如图4所示。图4 Gs的根轨迹曲线由图4可以发现,当阻尼系数=0.05,0.1时,其对应的根轨迹曲线有一局部在s平面的右边,即增加极点后系统的稳定性会受到影响。开环传递函数G2s的奈奎斯特曲线当p分别为0.01,0.1,1,10,100时,分别画出G2s和=0.1时Gs的奈奎斯特曲线。matlab中建立M文件M2_5.m(程序容见附录1)。运行结果如图5、图6所示。图5 G1s的奈奎斯特曲线图6 Gs的奈奎斯特曲线=0.1分析以上曲线,,当p变化时,G2s系统的奈奎斯特曲线不会包含点-1j,0,根据奈奎斯特稳定判据知,此时的系
10、统稳定。但当原系统的阻尼系数=0.1时,此时假设增加极点-1,即p=1,那么系统的奈奎斯特曲线与实轴的交点将在-1j,0,的左边,即包含点-1j,0,此时的系统将不再稳定通过本节根轨迹曲线与奈奎斯特曲线分析可以得出结论:增加零点不改变系统的稳定性;增加极点改变极点的稳定性。3增加零极点对系统暂态性能的影响系统稳定是系统能够正常工作的前提,因为当系统不稳定时,任何扰动都会使系统的输出趋于无穷。但对于稳定系统,还需要有较好的动态性能。一般要求系统跟踪输入跟踪变化的速度要快,跟踪精度要高。本节将从时域和频域两个方面进展讨论。在时域中将主要分析系统的超调量和调节时间,在频域中将主要讨论系统的谐振峰值和
11、带宽,分析增加开环零极点对系统暂态性能的影响。为了讨论方便,这里仍选用第二节中的G1s和G2s为研究对象。3.1增加零点对系统暂态性能的影响在开环传递函数G1s中,当增加的零点分别是0.01,1,100时,画出其对应的阶跃响应曲线和伯德图,并分析其对应的超调量,调节时间谐振峰值和带宽。零点a=0.01时的阶跃响应和伯德图此时,系统的开环传递函数为 ,闭环传递函数为。在matlab中建立M文件M3_1.m(程序容见附录1)。运行结果如图7、图8所示,同时在matlab命令窗口得到Mr=100.0050,Mb=141.2573 。由图7可以算出超调量 调节时间ts =270s 图7 a=0.01时
12、G1的阶跃响应曲线图8 a=0.01时G1的伯德图零点a= 1时的阶跃响应和伯德图当零点a=1时,系统的开环传递函数为闭环传递函数为 在matlab中建立M文件M3_2.m(程序容见附录1)。运行结果如图9、图10所示,同时在matlab命令窗口得到Mr=1.4676,Wb=1.816 。由图9可以算出超调量 调节时间ts =3.82s 图9 a=1时G1的阶跃响应曲线图10 a=1时G1的伯德图零点a= 100时的阶跃响应和伯德图当零点a=100时,系统的开环传递函数为闭环传递函数为在matlab中建立M文件M3_3.m(程序容见附录1)。运行结果如图11、图12所示,同时在matlab命令
13、窗口得到Mr=1.1547,Wb=1.2712。由图11可以算出超调量 调节时间ts =8.83s图11 a=100时G1的阶跃响应曲线图12 a=100时G1的伯德图原系统的阶跃响应和伯德图增加零点前,系统的开环传递函数为闭环传递函数为 在matlab中建立M文件M3_4.m(程序容见附录1)。运行结果如图13、图14所示,同时在matlab命令窗口得到Mr=1.1547,Wb=1.2711。由图11可以算出超调量 调节时间ts =8.38s 图13 a=100时G1的阶跃响应曲线图14 a=100时G1的伯德图综合分析按上述方法,还可算出a=0.1和a=10时系统的各项参数,现将结果总结如
14、表1所示。表1 零点a取不同值时系统的各暂态指标 超调量%谐振峰值Mr调节时间ts(s)带宽Wb原系统30.4%1.15478.381.2711a=0.0197.8%100.005270141.2573a=0.178%10.0516.6214.1609a=120.8%1.46763.821.816a=1026.8%1.15765.501.2766a=10030%1.15478.831.2712分析表1可以发现,增加零点会对系统的超调量、调节时间、谐振峰值和带宽产生影响,且增加的零点越大,对系统的暂态性能影响越小。当a增加到100时,系统的各项暂态参数均接近于原系统的参数。增加的极点越靠近虚轴,
15、其对应系统的带宽越小。同时还可以发现,时域中的超调量和频域中的谐振峰值在数值上亦存在一定的关系。具体表现为超调量减小时,谐振峰值也随之减小。综上分析,增加零点对系统暂态性能的影响可以总结为:增加的零点离虚轴越近,对系统暂态性影响越大,零点离虚轴越远,对系统的影响越小。3.2增加极点对系统暂态性能的影响在开环传递函数G2s中,当增加的极点分别是0.01,1,100时,画出其对应的阶跃响应曲线和伯德图,并分析其对应的超调量,调节时间,谐振峰值和带宽。极点p=0.01时的阶跃响应和伯德图此时,系统的开环传递函数为 ,闭环传递函数为在matlab中建立M文件M3_5.m(程序容见附录1)。运行结果如图
16、15、图16所示,同时在matlab命令窗口得到Mr=1,Wb=0.0100 。由图7可以算出超调量 ,调节时间ts =250s 。图15 p=0.01时G2的阶跃响应曲线图16 p=0.01时G2的伯德图极点p=1时的阶跃响应和伯德图此时,系统的开环传递函数为闭环传递函数为在matlab中建立M文件M3_6.m(程序容见附录1)。运行结果如图17、图18所示,同时在matlab命令窗口得到Mr=1,Wb=0.9992 。由图7可以算出超调量 ,调节时间ts =19s图17 p=1时G2的阶跃响应曲线图18 p=1时G2的伯德图极点p=100时的阶跃响应和伯德图此时,系统的开环传递函数为闭环传
17、递函数为在matlab中建立M文件M3_7.m(程序容见附录1)。运行结果如图19、图20所示,同时在matlab命令窗口得到Mr=1.1547,Wb=1.2711。由图7可以算出超调量 ;调节时间ts =8.6s 图19 p=100时G2的阶跃响应曲线图20 p=100时G2的伯德图综合分析按上述方法,还可算出p=0.1和p=10时系统的各项参数,现将结果总结如表1所示。表1:极点p取不同值时系统的各暂态指标超调量%谐振峰值Mr调节时间ts(s)带宽Wb原系统30.4%1.15478.381.2711p=0.01012500.01p=0.101250.1008p=140.6%1190.999
18、2p=1034.6%1.151810.61.2653p=10030.8%1.15478.61.2711分析表1可以发现,增加极点会对系统的超调量、调节时间、谐振峰值和带宽产生影响,且增加的极点越大,对系统的暂态性能影响越小。当p增加到100时,系统的各项暂态参数均接近于原系统的参数。增加的极点越靠近虚轴,其对应系统的带宽越小。综上分析,增加极点对系统暂态性能的影响可以总结为:增加的极点离虚轴越近,对系统暂态性影响越大,极点离虚轴越远,对系统的影响越小。通过本节对时域和频域的各暂态指标分析,可以得到增加开环零极点对系统暂态性能的影响如下:增加零点,会使系统的超调量增大,谐振峰值增大,带宽增加。增
19、加极点,会使系统的超调量减小,谐振峰值减小,带宽减小。 增加的零极点离虚轴越近,对系统暂态性影响越大;零极点离虚轴越远,对系统的暂态性影响越小。4增加零极点对系统稳态性能的影响稳态性能指的是系统的稳态误差,描述的是系统的控制精度。本节主要研究原系统系统和增加零极点后系统在阶跃函数、斜坡函数或加速度函数作用下的稳态误差,分析增加零极点对系统性能的影响。原系统的开环传递函数为0型系统,不能跟踪斜坡输入和加速度输入。但能跟踪阶跃输入,其稳态位置误差系数和稳态误差分别为当增加的零极点的位置不同,对系统的型别和稳态误差会产生不同的影响。应平时遇到的以最小相位系统为多,故下面主要分析其在s的左半平面,s的
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 极点 系统 性能 影响 分析 课程设计 报告书

链接地址:https://www.desk33.com/p-8708.html