《一轮复习——函数的零点》.docx
《《一轮复习——函数的零点》.docx》由会员分享,可在线阅读,更多相关《《一轮复习——函数的零点》.docx(3页珍藏版)》请在课桌文档上搜索。
1、一轮复习函数的零点教学设计【教学目标】1、知识与技能:(I)掌握函数零点的概念与函数零点存在性定理及其应用;(2)掌握函数零点、方程实根与图象交点三者之间的等价关系;2、过程与方法:通过对函数零点问题的复习,了解零点“数”与“形”的关系,体会数形结合与转化化归的数学思想;3、情感、态度与价值观:营造民主和谐的课堂氛围.【教学重点】函数零点、方程实根与图象交点三者之间的转化【教学难点】结合图象研究函数零点问题如何变形与转化【教学方法】启发式、引导式教学方法【教学过程】一、情境引入引例判断下列函数在给定区间上是否存在零点:(1) f(x)=x2-3-18,X1,8;(2) /(x)=ex+x-4,
2、X,3.【活动设计】L解决问题之前先引导学生回顾函数零点的定义:函数零点的定义:一一般地,把使函数y=()的值为O的实数X称为y=()的零点.注意:(1)函数零点的意义(等价说法):函数y=(x)的零点o方程/(x)=0的实根Oy=/(x)图象与X轴交点的横坐标;(2)函数的零点不是点,是一个实数.2.学生思考并讨论如何判断函数零点的存在性.【设计意图】本节课作为一轮复习课,通过具体的数学问题引入可以使学生更容易进入状态.引例(1)选取基本初等函数一一二次函数的零点判断问题可以引出判断零点的两种基本代数方法:直接解方程法;零点存在性定理:若函数y=(x)在区间卜泊上的图象是一条不间断的曲线,且
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 一轮复习函数的零点 一轮 复习 函数 零点
![提示](https://www.desk33.com/images/bang_tan.gif)
链接地址:https://www.desk33.com/p-907273.html