28第13章轴对称小结与复习教案.docx
《28第13章轴对称小结与复习教案.docx》由会员分享,可在线阅读,更多相关《28第13章轴对称小结与复习教案.docx(7页珍藏版)》请在课桌文档上搜索。
1、第13章轴对称小结与复习一、教学目标(一)知识与技能:I.总结本章所学的轴对称、轴对称变换、等腰三角形的性质和判定等知识;2.培养学生用轴对称的观点认识线段的中垂线、角的平分线、等腰三角形等几何图形;3.归纳总结本章学习过程中用到的数学思想方法,培养分析问题的能力.(二)过程与方法:使学生能较好地运用本章知识和技能解决有关问题.(三)情感态度与价值观:培养学生的分析解答能力.二、教学重点、难点重点:将所学知识有机地组织起来,形成科学合理的知识结构,并能综合运用.难点:通过归纳总结解题思想和方法,形成分析问题解决问题的能力.三、教学过程知识梳理一、轴对称相关定义和性质1 .定义(1)如果一个图形
2、沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴.(2)如果一个图形沿一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线(成轴)对称,这条直线就是它的对称轴.2 .性质(1)关于某直线对称的两个图形是全等图形;(2)如果两个图形关于某条宜线对称,那么对称轴是任何一对对应点所连线段的垂直平分线;(3)轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线.二、线段垂直平分线的性质和判定性质:线段垂直平分线上的点与这条线段两个端点的距离相等.判定:与一条线段两个端点距离相等的点,在这条线段的垂直平分线上.三、平面直角坐标系中轴对称
3、点(x,y)关于X轴对称的点的坐标为(x,-y);点(x,y)关于),轴对称的点的坐标为(-,y).四、等腰三角形的性质及判定1 .性质:(I)两腰相等;轴对称图形,等腰三角形底边上的中线(顶角的平分线、底边上的高)所在的直线就是它的对称轴;(3)两个底角相等,简称“等边对等角”;(4)顶角平分线、底边上的中线、底边上的高相互重合(简称“三线合一”).2 .判定(1)有两边相等的三角形是等腰三角形;(2)如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称”等角对等边”).五、等边三角形的性质及判定1 .性质:(1)等边三角形的三边相等.(2)等边三角形的三个内角都相等,并每一个角都等
4、于60.(3)等边三角形的三条高线,三条中线,三条角平分线,分别互相重合.(4)等边三角形是轴对称图形,有三条对称轴.(5)在直角三角形中,如果一个锐角等于30,那么它所对的直角边等于斜边的一半.2 .判定(I)三边相等的三角形是等边三角形.(2)三个角都相等的三角形是等边三角形.(3)有一个角是60的等腰三角形是等边三角形.六、有关作图1 .作线段的垂直平分线.2 .过己知直线外的一点作该直线的垂线.3 .最短路径:(1)牧人饮马问题;(2)造桥选址问题.考点讲练考点一轴对称及轴对称图形例I在下列“禁止行人通行、注意危险、禁止非机动车通行、限速20”四个交通标志图中,为轴对称图形的是()AA
5、BCD针对训练1 .在等腰三角形、圆、长方形、正方形、直角三角形中,一定是轴对称图形的有()个A.1B.2C.3D.42 .如图,/3=30,为了使白球反弹后能将黑球直接撞入袋中,那么击打白球时,必须保证Nl的度数为.考点二关于坐标轴对称的点的坐标例2按要求完成作图:(1)作aABC关于),轴对称的AAiBG;(2)在X轴上找出点P,使PA+PC最小,并直接写出P点的坐标.解:(1)如图,ZiABG为所求;如图,点P为所求,P点的坐标为(-3,0).针对训练3 .在直角坐标系中,点P(0,2)与点A(3,加关于X轴对称,则的值分别为()A.3,-2B.-3,-2C.3,2D.-3,2考点三线段
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 28 13 轴对称 小结 复习 教案
链接地址:https://www.desk33.com/p-927978.html