7-2-3乘法原理之染色法.教师版.doc
《7-2-3乘法原理之染色法.教师版.doc》由会员分享,可在线阅读,更多相关《7-2-3乘法原理之染色法.教师版.doc(6页珍藏版)》请在课桌文档上搜索。
1、-7-2-3乘法原理之染色问题教学目标1.使学生掌握乘法原理主要容,掌握乘法原理运用的方法;2.使学生分清楚什么时候用乘法原理,分清有几个必要的步骤,以及各步之间的关系3.培养学生准确分解步骤的解题能力;乘法原理的数学思想主旨在于分步考虑问题,本讲的目的也是为了培养学生分步考虑问题的习惯知识要点一、乘法原理概念引入教师周六要去给同学们上课,首先得从家出发到长宁上8点的课,然后得赶到黄埔去上下午1点半的课如果说申教师的家到长宁有5种可选择的交通工具公交、地铁、出租车、自行车、步行,然后再从长宁到黄埔有2种可选择的交通工具公交、地铁,同学们,你们说教师从家到黄埔一共有多少条路线?我们看上面这个示意
2、图,教师必须先的到长宁,然后再到黄埔这几个环节是必不可少的,教师是一定要先到长宁上完课,才能去黄埔的在没学乘法原理之前,我们可以通过一条一条的数,把线路找出来,显而易见一共是10条路线但是要是教师从家到长宁有25种可选择的交通工具,并且从长宁到黄埔也有30种可选择的交通工具,那一共有多少条线路呢?这样数,恐怕是要消耗很多的时间了这个时候我们的乘法原理就派上上用场了二、乘法原理的定义完成一件事,这个事情可以分成n个必不可少的步骤比方说教师从家到黄埔,必须要先到长宁,则一共可以分成两个必不可少的步骤,一是从家到长宁,二是从长宁到黄埔,第1步有A种不同的方法,第二步有B种不同的方法,第n步有N种不同
3、的方法则完成这件事情一共有ABN种不同的方法结合上个例子,教师要完成从家到黄埔的这么一件事,需要2个步骤,第1步是从家到长宁,一共5种选择;第2步从长宁到黄埔,一共2种选择;则教师从家到黄埔一共有52个可选择的路线了,即10条三、乘法原理解题三部曲1、完成一件事分N个必要步骤;2、每步找种数每步的情况都不能单独完成该件事;3、步步相乘四、乘法原理的考题类型1、路线种类问题比方说教师举的这个例子就是个路线种类问题;2、字的染色问题比方说要3个字,然后有5种颜色可以给每个字然后,问3个字有多少种染色方法;3、地图的染色问题同学们可以回家看地图,比方中国每个省的染色情况,给你几种颜色,问你一包括几个
4、局部的地图有几种染色的方法;4、排队问题比方说6个同学,排成一个队伍,有多少种排法;5、数码问题就是对一些数字的排列,比方说给你几个数字,然后排个几为数的偶数,有多少种排法例题精讲【例 1】 地图上有A,B,C,D四个(如下列图),现有红、黄、蓝三种颜色给地图染色,使相邻的颜色不同,但不是每种颜色都必须要用,问有多少种染色方法?【考点】乘法原理之染色问题 【难度】3星 【题型】解答 【解析】 A有3种颜色可选;当B,C取一样的颜色时,有2种颜色可选,此时D也有2种颜色可选根据乘法原理,不同的涂法有种;当B,C取不同的颜色时,B有2种颜色可选,C仅剩1种颜色可选,此时D也只有1种颜色可选(与A一
5、样)根据乘法原理,不同的涂法有种综上,根据加法原理,共有种不同的涂法【答案】【巩固】 如果有红、黄、蓝、绿四种颜色给例题中的地图染色,使相邻的颜色不同,但不是每种颜色都必须要用,问有多少种染色方法?【考点】乘法原理之染色问题 【难度】3星 【题型】解答 【解析】 第一步,首先对A进展染色一共有4种方法,然后对B、C进展染色,如果B、C取一样的颜色,有三种方式,D剩下3种方式,如果B、C取不同颜色,有种方法,D剩下2种方法,对该图的染色方法一共有种方法【注意】给地图染色问题中有的可以直接用乘法原理解决,有的需要分类解决,前者分类做也可以解决问题【答案】【例 2】 在右图的每个区域涂上、四种颜色之
6、一,使得每个圆里面恰有四种颜色,则一共有_种不同的染色方法【考点】乘法原理之染色问题 【难度】4星 【题型】解答 【解析】 因为每个圆个区域上染的颜色都不一样,所以一个圆的个区域一共有种染色方法如右图所示,当一个圆的、四个区域的颜色染定后,由于号区域的颜色不能与、三个区域的颜色一样,所以只能与号区域的颜色一样,同理号区域只能与号区域的颜色一样,号区域只能与号区域的颜色一样,所以当、四个区域的颜色染定后,其他区域的颜色也就相应的只有一种染法,所以一共有种不同的染法【答案】【例 3】 如图,地图上有A,B,C,D四个,现用五种颜色给地图染色,要使相邻的颜色不一样,有多少种不同染色方法?【考点】乘法
7、原理之染色问题 【难度】3星 【题型】解答 【解析】 为了按要求给地图上的这四个染色,我们可以分四步来完成染色的工作:第一步:给染色,有种颜色可选第二步:给染色,由于不能与同色,所以有种颜色可选第三步:给染色,由于不能与、同色,所以有种颜色可选第四步:给染色,由于不能与、同色,但可以与同色,所以有种颜色可选根据分步计数的乘法原理,用种颜色给地图染色共有种不同的染色方法【答案】【巩固】 如图,一地图上有五个,现在要求用四种不同的颜色区分不同,要求相邻的不能使用同一种颜色,不同的可以使用同种颜色,则这幅地图有多少着色方法?【考点】乘法原理之染色问题 【难度】3星 【题型】解答 【解析】 第一步,给
8、国上色,可以任选颜色,有四种选择;第二步,给国上色,国不能使用国的颜色,有三种选择;第三步,给国上色,国与,两国相邻,所以不能使用,国的颜色,只有两种选择; 第四步,给国上色,国与,两国相邻,因此也只有两种选择; 第五步,给国上色,国与,两国相邻,有两种选择 共有种着色方法【答案】【例 4】 如图:将一纸作如下操作,一、用横线将纸划为相等的两块,二、用竖线将下边的区块划为相等的两块,三、用横线将最右下方的区块分为相等的两块,四、用竖线将最右下方的区块划为相等的两块,如此进展8步操作,问:如果用四种颜色对这一图形进展染色,要求相邻区块颜色不同,应该有多少种不同的染色方法?【考点】乘法原理之染色问
9、题 【难度】3星 【题型】解答 【解析】 对这纸的操作一共进展了8次,每次操作都增加了一个区块,所以8次操作后一共有9个区块,我们对这纸,进展染色就需要9个步骤,从最大的区块从大到小开场染色,每个步骤地染色方法有:4、3、2、2、2,所以一共有:种【答案】【巩固】 用三种颜色去涂如下图的三块区域,要求相邻的区域涂不同的颜色,则共有几种不同的涂法?【考点】乘法原理之染色问题 【难度】2星 【题型】解答 【解析】 涂三块毫无疑问是分成三步第一步,涂A局部,则就有三种颜色的选择;第二步,涂B局部,由于要求相邻的区域涂不同的颜色,A和B相邻,当A确定了一种颜色后,B只有两种颜色可选择了;第三步,涂C局
10、部,C和A、B都相邻,A和B确定了两种不一样的颜色,则C只有一种颜色可选择了然后再根据乘法原理【答案】【例 5】 如图,有一地图上有五个,现在要用四种颜色对这一幅地图进展染色,使相邻的所染的颜色不同,不相邻的的颜色可以一样则一共可以有多少种染色方法?【考点】乘法原理之染色问题 【难度】3星 【题型】解答 【解析】 这一道题实际上就是例题,因为两幅图各个字母所代表的的相邻是一样的,如果将此题中的地图边界进展直角化就会转化为原题,所以对这幅地图染色同样一共有种方法【讨论】如果染色步骤为,则应该该如何解答?答案:也是种方法如果染色步骤为则应该如何解答?答案:染色的前两步一共有43种方法,但染第三步时
11、需要分类讨论,如果与颜色一样,则有2种染法,也有2种方法,如果与染不同的颜色,则有2种染法则只有一种染法,有2种染法,所以一共应该有种方法,(教师应该向学生说明第三个步骤用到了分类讨论和加法原理,加法原理在下一讲中将会讲授),染色步骤选择的经历方法:每一步骤所染的区块应该尽量和之前所染的区块相邻【答案】【巩固】 *沿海城市管辖7个县,这7个县的位置如右图现用红、黑、绿、蓝、紫五种颜色给右图染色,要求任意相邻的两个县染不同颜色,共有多少种不同的染色方法?【考点】乘法原理之染色问题 【难度】4星 【题型】解答 【解析】 为了便于分析,把地图上的7个县分别编号为、 (如左下列图)为了便于观察,在保持
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 乘法 原理 染色 教师版

链接地址:https://www.desk33.com/p-9335.html