必修四《第二章-平面向量》小结与复习.docx
《必修四《第二章-平面向量》小结与复习.docx》由会员分享,可在线阅读,更多相关《必修四《第二章-平面向量》小结与复习.docx(7页珍藏版)》请在课桌文档上搜索。
1、必修4第二章平面向量平面向量章节复习【学习目标】1 .理解向量、零向量、向量的模、单位向量、平行向量(共线向量)、相反向量、相等向量、两向量的夹角等概念;2 .了解平面向量根本定理;3 .向量的加法的平行四边形法那么(共起点)和三角形法那么(首尾相接4 .了解向量形式的三角形不等式:IlZ-IlWlZ+5|(试问:取等号的条件是什么?)和向量形式的平行四边形定理:2(a2+2)=-2+I2;5 .了解实数与向量的乘法(即数乘的意义);6 .向量的坐标概念和坐标表示法;7 .向量的坐标运算(加.减.实数和向量的乘法.数量积);8 .数量积(点乘或内积)的概念,ab=aIiICoSe=xx2+yy
2、?注意区别“实数与向量的乘法;向量与向量的乘法”。【复习回忆】向量知识,向量观点在数学.物理等学科的很多分支有着广泛的应用,而它具有代数形式和几何形式的“双重身份”能融数形于一体,能与中学数学教学内容的许多主干知识综合,形成知识交汇点,所以学习中应引起足够的重视.数量积的主要应用:求模长;求夹角;判垂直、平行、共线、共点。【课堂导学】一、典例分析例L0为aABC内部一点,NAOB=I50,NBOC=90,设冰二,OB=,OC=C,且Ial=2,I5|=1,Ic|=3,用与否表示C导学提示:运用向量的坐标表示以及平面向量的根本定理尝试解决问题。例2.(1)假设3、3、Z为任意向量,mR,那么以下
3、等式不二足成立的是(三-a*三*三三*A.3+6)+c=q+S+c)B.a+b)c=ac+bc一T*-C.in(a+h=ma+mbD.(ab)C=a(b,d)(2)设、3、Z是任意的非零平面向量,且相互不共线,那么(4b)c(co)b=O。gIVla(8c)a(ca)b不与。垂直(3a+2b)(3a-2b)=9|不一4|切中,是真命题的有()A.B.C.D.下面5个命题:3=()2=232aJ_(5c),那么cdcab=0,那么Ia+b-a-b|ob=0,那么或5=6,其中真命题是()A0BCD例3.两单位向量d与的夹角为120,假设c=2-。,d=3h-,试求C与2的夹角余弦。例4、向量中一
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第二章-平面向量 必修 第二 平面 向量 小结 复习
链接地址:https://www.desk33.com/p-979232.html