城市综合竞争力综合评价与衡量.doc
《城市综合竞争力综合评价与衡量.doc》由会员分享,可在线阅读,更多相关《城市综合竞争力综合评价与衡量.doc(21页珍藏版)》请在课桌文档上搜索。
1、标准文档城市综合竞争力综合评价摘要 现在中国的城市都高速发展,但它们之间却在很多方面有很大的差别。本文在构建一套比较科学、全面的城市竞争力综合评价指标体系的基础上,运用主成分分析法,聚类分析法对上海、北京、深圳、广州、天津、杭州、成都、厦门、烟台、南京、哈尔滨、长沙、武汉、沈阳、西安、郑州、青岛17个城市的综合竞争力进行了不同方面的综合分析评比,并找出了它们的相似性和其特点。结果是北京、上海、广州、深圳综合竞争力最强,属于国际大都市;而成都,烟台,武汉、南京、长沙、厦门、杭州、青岛、天津属于正在发展中的城市,综合竞争力中等,但它们之间也有些差别;然后沈阳、哈尔滨、西安、郑州就是综合竞争力排在末
2、尾的城市,大多指标都差于其他城市。本文也在最后给出各城市的发展建议。本文的评价方法具有可操作性(SPSS软件)、指标数据具有可得性(中国城市统计年鉴),能够比较客观、准确地反映城市竞争力的状况。关键词:主成分分析; 聚类分析; 综合评价。一、 城市竞争力综合评价的意义工业化、城市化和市场化的迅速推进使中国各城市和地区的竞争日趋激烈,联系日益密切。但是,国内许多城市并不了解其他城市,不了解自身竞争的地位和环境、优势和劣势、机遇和挑战。城市竞争的无序和盲目性导致竞争城市社会资源的巨大浪费,缺乏合作难以形成区域内各城市的优势互补。城市竞争力综合评价研究有助于城市正确认识自身的处境,认识竞争对手、合作
3、伙伴的优势和劣势,并制定正确的竞争与区域合作战略,从而有助于各城市实现有序合理的竞争,充分积极的合作。随着中国经济的发展,中国城市和区域间发展的差距也在不断扩大,城市竞争力综合评价研究有助于正确评价各城市的现状和潜力,及时了解各城市发展动向及发展趋势,制定完善的城市发展总体规划和战略;有助于各城市之间的相互促进、共同发展;有助于实现经济整体的健康发展。城市是国家的重要组成部分,城市为企业提供载体和环境条件,国家竞争和产业竞争主要是通过国际城市竞争来实现的。因此,研究城市竞争力有助于中国参与国际竞争,有助于中国产业参与国际竞争。二、 城市竞争力综合评价指标体系的具体内容根据城市竞争力的含义和我国
4、一些学者所建立的城市竞争力评价指标体系构建了7个评价指标:(1) 经济总量水平(亿元):也就是城市总的GDP。(2) 经济人均占有量水平(万元)(3) GDP增长率(%)这3项指标综合反映一个城市的总体经济发展水平和经济发展阶段,是城市竞争力的基础因素和最重要标志。(4) 公共服务满意度(分):这项指标则反映了民众对城市的综合评价。(5) 交通运输(万人次):这项指标取的是城市全年公共汽车的客运总量,反映的是人们的行。(6)环境(微克/立方米):取的是城市PM2.5的均值。(5)和(6)是一个城市基本建设的硬件系统,为居民提供生活的基本条件。(7)文化素质:取的是该城市本科以上文化程度占总人口
5、比重。这项指标是城市竞争力的直接推动力。一定程度上讲,决定城市竞争优势的关键,并不是劳动力的数量,而是它的质量。三、 综合评价综合评价是通过一定的算式将多个指标对事物不同方面的评价值综合在一起,从而对事物有一个整体的认识。综合评价的方法主要有如下几种:常规多指标数学合成方法、多元统计分析方法、模糊综合评价方法、灰色系统评价方法等。各种综合方法都有不同的适用条件,从评价方法的先进性和科学性的角度考虑,我们选择多元统计分析方法对城市竞争力进行测定与比较。多元统计分析方法包括主成分分析、因子分析、聚类分析和判别分析等。为了反映城市竞争力水平,并且对各城市进行排序,本文主要使用因子分析法。同时,为了寻
6、找城市之间的相似性,对被评价的城市进行分类,我们又使用聚类分析法。3.1 因子分析 因子分析是一种降维、简化数据的技术。它将原始指标综合成较少的指标,这些指标能够反映原始指标的绝大部分信息(方差),这些综合指标之间没有相关性。使我们对问题进入综合评价时能更方便。最常用的因子分析类型是R型因子分析和Q型因子分析。R型因子分析是对变量作因子分析,Q型因子分析是对样品做因子分析。本文用的是R型因子分析。F:因子变量A;因子载荷矩阵: 因子载荷: 在因子变量不相关的条件下,就是第i个原始变量与第j个因子变量的相关系数。绝对值越大,则Xi与Fi的关系越强。:特殊因子。:两变量间的简单相关系数: 累计贡献
7、率。P: 所有变量总方差 因子载荷: 在因子变量不相关的条件下,就是第i个原始变量与第j个因子变量的相关系数。绝对值越大,则与的关系越强。 变量的共同度: 也称公共方差。Xi的变量共同度为因子载荷矩阵A中第i行元素的平方和。=。Xi的共同度反映了全部因子变量对Xi总方差的解释能力。 公因子的方差贡献: 因子变量的方差贡献为因子载荷矩阵A中第j列元素的平方和。 ,j=1,2,m 为公共因子 对X 的贡献,即 表示同一公共因子 对各变量所提供的方差贡献之总和,它是衡量每一个公共因子相对重要性的一个尺度。(1) 根据研究问题选取原始变量。(2) 对原始变量进行标准化并求其相关阵,分析变量之间的相关性
8、。(3) 求解初识公共因子及因子载荷矩阵。(4) 因子旋转。(5) 因子得分。(6) 根据因子得分进行进一步分析。也可以矩阵的形式表示为: X=AF+(1)原始变量一致化:本文除环境指标以外,都是越大越好。对于环境指标,通过变化,即可将环境指标极大化。(2) 原始变量标准化:采用极值差方法: 变换后 (3) 计算相关系数矩阵:计算原有变量的简单相关系数矩阵。观察相关系数矩阵,如果相关系数矩阵中的大部分相关系数值小 11于0.3,则各个变量之间大多为弱相关,这就不适合做因子分析。 对于两个变量x与y,如果它们的样本值分别为xi与yi(i=1,2,n) ,它们之间的相关系数: (4) KMO检验:
9、 KMO统计量用于检验变量间的偏相关性是否足够小,是简单相关量和偏相关量的一个相对系数,由下式求得: KMO的取值范围在0与1之间。当KMO0.9 非常合适作因子分析,KMO0.5,较适合做因子分析。Bartletts球形度检验用于检验相关阵是否是单位阵,即各变量是否各自独立。本文的是0.010.05,拒绝原假设,相关系数矩阵为单位矩阵,说明变量间存在相关关系,适合做因子分析。特征根与方差贡献率表因子起始特征值提取平方和载入旋转平方和载入合计方差的 %累加 %合计方差的 %累加 %合计方差的 %累加 %1234.7105.3886.2857.136提取方法:主成分分析。该表则为特征根与方差贡献
10、率表。每组的列向量含义:特征值、方差贡献率、累计方差贡献率。第二列表示提取三个因子,共同解释78.301%,丢失的信息较少。第三列表示旋转后的因子,总的方差贡献率没有改变,就是说没有影响原有的共同度,重新分配各个因子解释原有变量的方差,改变各个因子的方差贡献率。可以看出前3个因子的特征根累积贡献率已经达到78.301%,因此保留前3个因子即可。因子矩阵元件123经济总量水平(亿元).846.368文化素质.235.204交通运输(万人次).729.461经济人均占有量(万元).700.585.016环境2.611.418GDP增长率.841.321公共服务满意度(分).478提取方法:主成分分
11、析。a. 提取3个因子。该表为未旋转因子载荷矩阵。结果是某个变量等于三个因子与对应系数相乘后相加的结果。观察可知,第一个因子与所有变量的相关性程度高,与第二个、第三个不高,含义模糊,不利于归类,所以因子要旋转。旋转因子矩阵元件123交通运输(万人次).949.021经济总量水平(亿元).905.165.185公共服务满意度(分).022.844文化素质.016环境2.185.550.523GDP增长率.838经济人均占有量(万元).328.380.762提取方法:主成分分析。该表为采用方差极大法对因子载荷矩阵实行正交旋转后的因子载荷阵。可以看出第一个公共因子在X1,X2,有较大的载荷,说明这2
12、个变量具有很强的相关性,归为第一类。第二个公共因子则在X3,X4,X5上有较大的载荷,归为第二类。第三个公共因子则在X6,X7上有较大的载荷,归为第三类。从每个因子的方差贡献率可以得出第一类的X1,X2是城市竞争力指标体系中重要的指标。然后依次是第二类的,第三类的。因子转换矩阵元件1231.771.557.3092.006.9273.515.214提取方法:主成分分析。此表为因子转换矩阵。若A表示旋转前的因子载荷矩阵,B表示因子转换矩阵,C表示旋转后因子载荷矩阵,则有C=AB。因子评分协方差矩阵元件1231.000.0002.000.0003.000.000提取方法:主成分分析。此为因子协方差
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 城市 综合 竞争力 评价 衡量 docx

链接地址:https://www.desk33.com/p-9813.html