基于51单片机的数字热敏温度计设计论文正稿.doc
《基于51单片机的数字热敏温度计设计论文正稿.doc》由会员分享,可在线阅读,更多相关《基于51单片机的数字热敏温度计设计论文正稿.doc(29页珍藏版)》请在课桌文档上搜索。
1、信息与电气工程学院电子应用系统CDIO二级项目设计说明书 题 目 : _数字热敏温度计_1. 设计目的温度作为一个重要的物理量,是工业生产过程中最普遍、最重要的工艺参数之一,所以温度测量技术和测量仪器的研究是一个重要的课题。随着时代的进步和发展,单片机技术已经伸入到各个领域,基于单片机数字温度计与传统的温度计相比,具有读数方便,测温围广,其输出温度采用数字显示。本次CDIO题目是利用51单片机与热敏电阻设计一个温度采集系统,通过学过的单片机和数字电路与面向对象编程等课程的知识设计。要求的功能是能通过串口将采集的数据在上位机窗口显示,采集的温度达一定的精度。2. 设计正文2.1 整体系统设计思路
2、系统的硬件电路包括微控制器部分(主机),温度检测,人机对话(键盘/显示)三个主要部分。系统结构框图和硬件原理图分别如图1所示。热敏电阻NTCPCF8591 AD采集89C51数据处理LCD1602显示串口通信上位机显示图 1 系统设计结构框图温度检测部分采用传统的热敏电阻,热敏电阻的阻值随环境温度变化而变化,变送器将电阻信号转换成与温度成正比的电压信号,经A/D转换器将其转换为单片机可识别得二进制数字量,单片机主要控制LCD显示器显示正确的温度值,LCD显示器实现显示功能。由于采集NTC热敏电阻的时候需要一个基准,因此我采用了18B20的温度作为基准。它利用了一款新型的温度检测芯片DS18B2
3、0,这个芯片大大简化了温度检测模块的设计,它无需A/D转换,可直接将测得的温度值以二进制形式输出。该基准的原理框图和硬件原理图如图2所示:DS18B20温度采集89C51数据处理提供基准温度LCD1602显示图2 基准系统结构框图DS18B20是美国达拉斯半导体公司生产的新型温度检测器件,它是单片结构,无需外加A/D即可输出数字量,通讯采用单线制,同时该通讯线还可兼作电源线,即具有寄生电源模式。它具有体积小、精度易保证、无需标定等特点,特别适合与单片机合用构成智能温度检测与控制系统。2.2 系统各模块介绍2.2.1 AT89C51芯片介绍AT89S52 具有以下标准功能:8k 字节 Flash
4、,256 字节 RAM,32 位 I/O 口线,看门狗定时器,2 个数据指针,三个 16 位定时器/计数器,一个 6 向量 2 级中断结构,全双工串行口,片晶振与时钟电路。另外,AT89S52 可降至 0Hz 静态逻辑操作,支持 2 种软件可选择节电模式。AT89C52的引脚图如图3 所示。图 3 AT89C52引脚图P0 口:P0 口是一个 8 位漏极开路的双向 I/O 口。作为输出口,每位能驱动 8 个 TTL 逻辑电平。对 P0 端口写“1”时,引脚用作高阻抗输入。当访问外部程序和数据存储器时,P0 口也被作为低 8 位地址/数据复用。在这种模式下,P0 具有部上拉电阻。在 flash
5、编程时,P0 口也用来接收指令字节;在程序校验时,输出指令字节。程序校时,需要外部上拉电阻。P1 口:P1 口是一个具有部上拉电阻的 8 位双向 I/O 口,p1 输出缓冲器能驱动 4 个TTL 逻辑电平。对 P1 端口写“1”时,部上拉电阻把端口拉高,此时可以作为输入口使用。作为输入使用时,被外部拉低的引脚由于部电阻的原因,将输出电流(IIL)。P2 口:P2 口是一个具有部上拉电阻的 8 位双向 I/O 口,P2 输出缓冲器能驱动 4 个TTL 逻辑电平。对 P2 端口写“1”时,部上拉电阻把端口拉高,此时可以作为输入口使用。作为输入使用时,被外部拉低的引脚由于部电阻的原因,将输出电流(I
6、IL)在访问外部程序存储器或用 16 位地址读取外部数据存储器(例如执行 MOVX DPTR)时,P2 口送出高八位地址。P3 口:P3 口是一个具有部上拉电阻的 8 位双向 I/O 口,p2 输出缓冲器能驱动 4 个TTL 逻辑电平。对 P3 端口写“1”时,部上拉电阻把端口拉高,此时可以作为输入口使用。作为输入使用时,被外部拉低的引脚由于部电阻的原因,将输出电流(IIL)。P3 口亦作为 AT89C52 特殊功能(第二功能)使用,AT89C52的P3口的第二功能表如表1所示。表1 AT89C52的P3口的第二功能表脚号第二功能P3.0RXD(串行输入)P3.1TXD(串行输出)P3.2IN
7、T0(外部中断 0)P3.3INT0(外部中断 0)P3.4T0(定时器 0 外部输入)P3.5T1(定时器 1 外部输入)P3.6WR(外部数据存储器写选通)P3.7RD(外部数据存储器写选通)RST: 复位输入。晶振工作时,RST 脚持续 2 个机器周期高电平将使单片机复位。看门狗计时完成后,RST 脚输出 96 个晶振周期的高电平。特殊寄存器 AUXR(地址 8EH)上的 DISRTO 位可以使此功能无效。DISRTO 默认状态下,复位高电平有效。ALE/PROG:地址锁存控制信号(ALE)是访问外部程序存储器时,锁存低 8 位地址的输出脉冲。在 flash 编程时,此引脚(PROG)也
8、用作编程输入脉冲。在一般情况下,ALE 以晶振六分之一的固定频率输出脉冲,可用来作为外部定时器或时钟使用。然而,特别强调,在每次访问外部数据存储器时,ALE 脉冲将会跳过。PSEN:外部程序存储器选通信号(PSEN)是外部程序存储器选通信号。当 AT89S52 从外部程序存储器执行外部代码时,PSEN 在每个机器周期被激活两次,而在访问外部数据存储器时,PSEN 将不被激活。EA/VPP:访问外部程序存储器控制信号。为使能从 0000H 到 FFFFH 的外部程序存储器读取指令,EA 必须接 GND。为了执行部程序指令,EA 应该接 VCC。在 flash 编程期间,EA 也接收 12V编程电
9、源( VPP)。XTAL1:振荡器反相放大器和部时钟发生电路的输入端。XTAL2:振荡器反相放大器的输出端。(2)晶振电路晶振电路是单片机的最小系统的组成部分。典型的晶振取11.0592MHz(因为可以准确地得到9600波特率和19200波特率,用于有串口通讯的场合)/12MHz(产生精确的uS级时歇,方便定时操作)。特别注意:对于31脚(EA/Vpp),当接高电平时,单片机在复位后从部ROM的0000H开始执行;当接低电平时,复位后直接从外部ROM的0000H开始执行。(3)复位电路复位电路也是单片机的最小系统的组成部分。当单片机系统在运行中,受到环境干扰出现程序执行错乱的时候,按下复位按钮
10、部的程序自动从头开始执行。复位电路的原理是单片机RST引脚接收到2us以上的电平信号,只要保证电容的充放电时间大于2US,即可实现复位,所以电路中的电容值是可以改变的。按键按下系统复位,是电容处于一个短路电路中,释放了所有的电能,电阻两端的电压增加引起的。单片机最小系统复位电路的极性电容的大小直接影响单片机的复位时间,一般采用1030uF,51单片机最小系统容值越大需要的复位时间越短。2.2.2PCF8591 AD/DA芯片PCF8591是一个单片集成、单独供电、低功耗、8-bit CMOS数据获取器件。PCF8591具有4个模拟输入、1个模拟输出和1个串行IC总线接口。PCF8591的3个地
11、址引脚A0, A1和A2可用于硬件地址编程,允许在同一个IC总线上接入8个PCF8591器件,而无需额外的硬件。在PCF8591器件上输入输出的地址、控制和数据信号都是通过双线双向IC总线以串行的方式进行传输。PCF8591的功能包括多路模拟输入、置跟踪保持、8-bit模数转换和8-bit数模转换。PCF8591的最大转化速率由IC总线的最大速率决定。1、主要技术指标和特性 单独供电 PCF8591的操作电压围2.5V-6V 低待机电流 通过I2C总线串行输入/输出 PCF8591通过3个硬件地址引脚寻址 PCF8591的采样率由I2C总线速率决定 4个模拟输入可编程为单端型或差分输入 自动增
12、量频道选择 图4 PCF8591引脚图PCF8591的模拟电压围从Vss到VDD PCF8591置跟踪保持电路 8-bit逐次逼近A/D转换器 通过1路模拟输出实现DAC增益 2、ADC0808引脚功能PCF8591引脚图如图4所示AIN0AIN3:模拟信号输入端。 A0A3:引脚地址端。 VDD、VSS:电源端。 (2.56V) SDA、SCL:I2C 总线的数据线、 时钟线。 OSC:外部时钟输入端,部时钟输出端。 EXT:部、外部时钟选择线,使用部时钟时 EXT 接地。 AGND:模拟信号地。 AOUT:D/A 转换输出端。 VREF:基准电源端。4 功能描述(1)地址IIC总线系统中的
13、每一片PCF8591通过发送有效地址到该地址器件来激活。该地址包括固定部分和可编程部分。可编程部分必需根据地址引脚A0、A1和A2来设置。在IIC总线协议中地址必需是起始条件后作为第一个字节发送。地址字节的最后一位是用于设置以后数据传输方向的读/写。地址设置如图 5所示:图5 PCF8591地址设置(2)控制字图 6 控制字格式控制字节用于实现器件的各种功能,如模拟信号由哪几个通道输入等。控制字节存放在控制寄存器中。总线操作时为主控器发送的第二字节。其格式如以下图6所示:其中:D1、D0两位是A/D通道编号:00通道0,01通道1,10通道2,11通道3D2 自动增益选择(有效位为1) D5、
14、D4模拟量输入选择:00为四路单数入、01为三路差分输入、10为单端与差分配合输入、11为模拟输出允许有效 当系统为A/D转换时,模拟输出允许为0。模拟量输入选择位取值由输入方式决定:四路单端输入时取00,三路差分输入时取01,单端与差分输入时取10,二路差分输入时取11。最低两位时通道编号位,当对0通道的模拟信号进行A/D转换时取00,当对1通道的模拟信号进行A/D转换时取01,当对2通道的模拟信号进行A/D转换时取10,当对3通道的模拟信号进行A/D转换时取11。 在进行数据操作时,首先是主控器发出起始信号,然后发出读寻址字节,被控器做出应答后,主控器从被控器读出第一个数据字节,主控器发出
15、应答,主控器从被控器读出第二个数据字节,主控器发出应答一直到主控器从被控器中读出第n个数据字节,主控器发出非应答信号,最后主控器发出停止信号。(3)A/D转换A/D转换器采用逐次逼近转换技术。在A/D转换周期将临时使用片上转换器和高增益比较器。一个A/D转换周期总是开始于发送一个有效读模式地址给PCF8591之后。A/D转换周期子在应答时钟脉冲的后延被触发。并在传输前一次转换结果时执行(见图7)图 7 A/D转换一旦一个转换周期被触发,所选通的输入电压采样将保存到芯片并被转换为对应的8位二进制码,取自差分输入的采样将被转换为8位二进制补码 转换结果被保存在ADC数据寄存器等待传输。如果自动增量
16、标志被置1,将选择下一个通道。在读周期传输的第一个字节包含前一次读周期的转换结果代码,以上电复位之后读取的第一个字节是0x80。最高A/D转换速率取决于实际的IIC总线速度。(4)D/A转换发送给PCF8591的第三个字节被存储到DAC数据存储器,并使用片D/A转换器转换成对应的模拟电压。这个D/A 转换器由连接到外部参考电压的具有256个接头的电阻分压电路和选择开关组成。接头译码器切换一个接头至DAC输出线。模拟输出电压由自动清零单位增益放大器缓冲。这个缓冲放大器可通过设置控制寄存器的模拟输出允许标志来打开或关闭。在激活状态,输出电压将保持到新的数据字节被发送。提供给模拟输出AOUT的输出电
17、压由下式给出。D/A转换顺序的波形图如图8= +图8 D/A转换(5)振荡器片上振荡器产生A/D转换周期和刷新自动清零缓冲放大器需要的时钟信号。在使用这个振荡器时EXT引脚必须连接到VSS。在OSC引脚振荡频率是可用的。如果EXT引脚被连接到VDD,振荡输出OSC将切换到高阻态以允许用户连接外部时钟信号至OSC。6 I2C总线特性I2C总线是不同的IC或模块之间的双向两线通信,这两条线是串行数据线(SDA)和串行时钟线(SCL),这两条线必须通过上拉电路连接至正电源。数据传输只能是在总线不忙时启动。(1)位传输 一个数据位在每一个时钟脉冲期间传输。SDA线上的数据必须在时钟脉冲的高电平期间保持
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 基于 51 单片机 数字 热敏 温度计 设计 论文
![提示](https://www.desk33.com/images/bang_tan.gif)
链接地址:https://www.desk33.com/p-9849.html