[奥本海姆]信号与系统(第二版)课后答案(英文版、非扫描版).docx
《[奥本海姆]信号与系统(第二版)课后答案(英文版、非扫描版).docx》由会员分享,可在线阅读,更多相关《[奥本海姆]信号与系统(第二版)课后答案(英文版、非扫描版).docx(195页珍藏版)》请在课桌文档上搜索。
1、Signals&Systems(SecondEdition)LearningInstructions(ExercisesAnswers)DepartmentofComputerEngineering2005.12ContentsChapter 1 ,2Chapter 2 ,17ChiIPter3*35Chapter462ChaPter5*83Chapter6-109ChiIPter7119Chapter 8 -132Chapter 9 -140Chapter 10 i1601 1 1- p = coS 加=2e 22.e T = COSq)+ /sin= / 泼= =j-i2 , v snP=
2、,because48-3j=S-jw21j=e-(不声=e,M)I=Jherefg足,(矶力=匚力一,PEkJg(瞰UmudT吧=12TTT2(C)2(O=cos(t).Therefore,EH=JNX3(矶力=Iucos(%=8,(,如丽(加j屋M同百加Po0=O1becauseEexjin=eX11f=1therefore,EW=PoO=Iim-Ll-V92l=Iim-L2NLyl2Lc|NqN1/、-n=,22(f)HM=C。用Therefore,&=独如汽口吟)=至。吟”cos(P30=(兀)IimJE(+2公)=-奥加T&cos=2加21.4. (a)Thesignalxnisshi
3、ftedby3totheright.Theshiftedsignalwillbezeroforn7.(b) Thesignalxnisshiftedby4totheleft.Theshiftedsignalwillbezeroforn0.(c) Thesignalxnisflippedsignalwillbezeroforn2.(d) Thesignalx11lisflippedandtheflippedsignalisshiftedby2totheright.ThenewSignalwillbezeroforn4.(e) Thesignalxnisflippedandtheflippedan
4、dtheflippedsignalisshiftedby2totheleft.Thisnewsignalwillbezeroforn0.1.5. (a)x(l-t)isobtainedbyflippingx(t)andshiftingtheflippedsignalby1totheright.Therefore,x(l-t)willbezerofort-2.(b) From(a),weknowthatx(1-t)iszerofort-2.Similarly,x(2-t)iszerofort-l,Therefore,x(1-t)+x(2-t)willbezerofort-2.(c) x(3t)i
5、sobtainedbylinearlycompressionx(t)byafactorof3.Therefore,x(3t)willbezerofort1.(d) x(t3)isobtainedbylinearlycompressionx(t)byafactorof3.Therefore,x(3t)willbezerofort9.1.6. (a)X(r)isnotperiodicbecauseitiszerofort3(b)Sincex,()isanoddsignal,(x,11)iszeroforallvaluesoft.(C)e,(利川)=如加+X卜叫l-3-QjTherefore,(X3
6、)iszerowhenn.18(a)(9MXP)=_20s(0+)(b) (t11dX2(r)=cos()cos(3r+2)=cos(30=e0,cos(3z+)(c) (fX3()=ezsin(3+r)=n(3-)(/4)e-2si11(100)=sin(1OOr+)=2lcos(100/+y)乎is供日前Ccomplexexponential.国(r)%(0=9(b) isacomplexexponentialmultipliedbyadecayingexponential.Therefore,j(r)isnotperiodic.n(c) X3nisaperiodicsignal.XJm)
7、=XWisacomplexexponentialwithafundamentalperiodof竺.2=2兀(d)(向isaperiodicsignal.ThefundamentalperiodisgivenbyN=m(,$)YBychoosingm=3.Weobtainthefundamentalperiodtobe10.(e)isnotperiodic,rr1isacomplexexponentialwithwecannottnanyInlegerm4JAsihsuchthatm(2元)isalsoaninteger.Therefore,.isnotperiodic.刈对Wo1.10.x(
8、)=2cos(10t+l)-sin(4t-l)PeriodoffirsttermintheRHS=2n.三一105PeriodoffirsttermintheRHS=2.一42Therefore,theoverallsignalisperiodicwithaperiodwhichtheleastcommonmultipleoftheperiodsofthefirstandsecondterms.Thisisequalto.1.lLxnl=1+PeriodoffirsttermintheRHS=1.PeriodofsecondtermintheRHS-(2)=7(whenm=2)1477JPer
9、iodofsecondtermintheRHS-2(whenm=l)k2xf5)Therefore,theoverallsignalxnisperiodicwithaperiodwhichistheleastcommonMultipleoftheperiodsofthethreetermsinnxn.Thisisequalto35.1.12 .ThesignalxnisasshowninfigureS1.12.xncanbeobtainedbyflippingunandthenShiftingtheflippedsignalby3totheright.Therefore,xn=u-n+3.Th
10、isimpliesthatM=-Iandno=-3.1.13Oj -2 1,-2 2Mt)= Lx(T)由=f(+2)-(-WThereforeEg=J=41.14 Thesignalx(t)anditsderivativeg(t)areshowninFigureS1.14.g(t)-1(O=3(r-2)-3(r-2-l)A-0oThisimpliesthatA1=3,11=0,A2=-3,andt2=1.1.15 (a)Thesignalx2n,whichistheinputtoS2,isthesameasy1n.Therefore,Iyn=X9n-2+Xn-3-221=y1n-2+-y1n
11、-31=2xIn-2+4xIn-3+-(2x1n-3+4xln-4)=2xln-25xln-3+2xln-4Theinput-outputrelationshipforSisyn=2xn-2+5xn-3+2xn-4(b)Theinput-outputrelationshipdoesnotchangeiftheorderinwhichS1andS2areconnectedseriesreversed.WecaneasilyprovethisassumingthatS1followsS2.Inthiscase,thesignalXjnLwhichistheinputtoS1isthesameasy
12、2n.Thereforeylnl=2x1n4x1n-11=2y2n+4y2n-l1 1=2(x2n-21+x2n-3)+4(x2(n-31+xn-4)2 ,22=2x2n-2+5x2n-3+2x2n-4Theinput-outputrelationshipforSisonceagainyn=2xn-2+5xn-3+2xn-41.16 (a)Thesystemisnotmemorylessbecauseyndepenonpastvaluesofxn.(b)Theoutputofthesystemwillbey(n=OTl712=0(c)Fromtheresultofpart(b),wemayco
13、ncludethatthesystemoutputisalwayszeroforinputsoftheform3一%,kr.Therefore,thesystemisnotinvertible.1.17 (a)Thesystemisnotcausalbecausetheoutputy(t)atsometimemaydependonfuturevaluesofx(t).Forinstance,y(-)=x(0).(b)Considertwoarbitraryinputsx(t)andX2(t).xI(Oy1(t)=x1(sin(t)x2W-y2(0=x2(sin(t)1.etX3(t)beali
14、nearcombinationofx(t)andx2(t).Thatis,x(t)=ax(t)+bx(t)3I2Whereaandbarearbitraryscalars.Ifx3(t)istheinputtothegivensystem,thenthecorrespondingoutputy(Oisy(t)=x(sin(t)333=axl(sin(t)+X2(sin(t)=ay1(t)+by2(t)Therefore,thesystemislinear.1.18.(a)Considertwoarbitraryinputsxlnandx2n.x,ny1n=ZXWk=n-%I2fn1Ty2fnl
15、=ZX伙k=n-nft21.etx3nbealinearcombinationofx1nlandx2n.Thatis:x3n=ax1n+bx2nwhereaandbarearbitraryscalars.Ifx3nistheinputtothegivensystem,thenthecorrespondingoutput11+110ynisyn=yxk33=ff-1103n+n+/HlD=网+如灯)=a芭伙+b2入;伙k=n-nuk=n-t0k=n-11o2=ay1nby2nThereforethesystemislinear.(b) Consideranarbitraryinputx1n.Le
16、ty 1 nl = XX W=-0 Ibe the corresponding output .Consider a second input x2 n obtained by shifting xln in time:n-n /kn-n -x2 n=x1n-nllThe output corresponding to this input is +Also note thatTherefore,y n= ZX k= ZM伙一nk=n-no 2k=n-nn-ni Yi n-l= x1k=n-nx -iiqy2lnl=y n-njJ=Thisimpliesthatthesystemistime-
17、invariant.yn (2n +1)B.o(c) Ifwyn=x2111-2x2ny2n=x22n-2.1.etx3(I)bealinearcombinationofXnandx2n.Thatisx3nl=ax1n+bx2111whereaandbarearbitraryscalars.Ifx3nistheinputtothegivensystem,thenthecorrespondingoutputy11isy3n=x32n-232=(ax,n-2+bxJn-2)=a2x12n-2j+b2x22n-2+2abxln-2X2n-2ay,n+by2nThereforethesystemisn
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 奥本海姆 信号 系统 第二 课后 答案 英文 扫描

链接地址:https://www.desk33.com/p-992607.html